REFERENCES

1. Chorsi MT, Curry EJ, Chorsi HT, et al. Piezoelectric biomaterials for sensors and actuators. Adv Mater 2019;31:e1802084.

2. Li J, Long Y, Yang F, Wang X. Degradable piezoelectric biomaterials for wearable and implantable bioelectronics. Curr Opin Solid State Mater Sci 2020;24:100806.

3. Dagdeviren C, Hwang SW, Su Y, et al. Transient, biocompatible electronics and energy harvesters based on ZnO. Small 2013;9:3398-404.

4. Cung K, Han BJ, Nguyen TD, et al. Biotemplated synthesis of PZT nanowires. Nano Lett 2013;13:6197-202.

5. Rödel J, Webber KG, Dittmer R, Jo W, Kimura M, Damjanovic D. Transferring lead-free piezoelectric ceramics into application. J Eur Ceram Soc 2015;35:1659-81.

6. Jeong CK, Kim I, Park KI, et al. Virus-directed design of a flexible BaTiO3 nanogenerator. ACS Nano 2013;7:11016-25.

7. Okada K, Yanagisawa T, Kameshima Y, Nakajima A. Properties of TiO2 prepared by acid treatment of BaTiO3. Mater Res Bull 2007;42:1921-9.

8. Zhu P, Chen Y, Shi J. Piezocatalytic tumor therapy by ultrasound-triggered and BaTiO3-mediated piezoelectricity. Adv Mater 2020;32:e2001976.

9. Wang Y, Zhou XY, Chen Z, et al. Synthesis of cubic LiNbO3 nanoparticles and their application in vitro bioimaging. Appl Phys A 2014;117:2121-6.

10. Yu S, Kuo S, Tuan W, Tsai Y, Wang S. Cytotoxicity and degradation behavior of potassium sodium niobate piezoelectric ceramics. Ceram Int 2012;38:2845-50.

11. Liu F, Hashim NA, Liu Y, Abed MM, Li K. Progress in the production and modification of PVDF membranes. J Membr Sci 2011;375:1-27.

12. Bystrov VS, Paramonova EV, Bdikin IK, Bystrova AV, Pullar RC, Kholkin AL. Molecular modeling of the piezoelectric effect in the ferroelectric polymer poly(vinylidene fluoride) (PVDF). J Mol Model 2013;19:3591-602.

13. Beringer LT, Xu X, Shih W, Shih W, Habas R, Schauer CL. An electrospun PVDF-TrFe fiber sensor platform for biological applications. Sens Actuators A Phys 2015;222:293-300.

14. Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 2000;21:2335-46.

15. Feig VR, Tran H, Bao Z. Biodegradable polymeric materials in degradable electronic devices. ACS Cent Sci 2018;4:337-48.

16. Tan MJ, Owh C, Chee PL, Kyaw AKK, Kai D, Loh XJ. Biodegradable electronics: cornerstone for sustainable electronics and transient applications. J Mater Chem C 2016;4:5531-58.

17. Lemanov VV. Piezoelectric and pyroelectric properties of protein amino acids as basic materials of soft state physics. Ferroelectrics 2000;238:775-82.

18. Lemanov VV, Popov SN, Pankova GA. Piezoelectric properties of crystals of some protein aminoacids and their related compounds. Phys Solid State 2002;44:1929-35.

19. Perlovich GL, Hansen LK, Bauer-brandl A. The polymorphism of glycine - thermochemical and structural aspects. J Therm Anal Calorim 2001;66:699-715.

20. Hu P, Hu S, Huang Y, et al. Bioferroelectric properties of glycine crystals. J Phys Chem Lett 2019;10:1319-24.

21. Guerin S, Stapleton A, Chovan D, et al. Control of piezoelectricity in amino acids by supramolecular packing. Nat Mater 2018;17:180-6.

22. Hamilton BD, Hillmyer MA, Ward MD. Glycine polymorphism in nanoscale crystallization chambers. Cryst Growth Des 2008;8:3368-75.

23. Bishara H, Berger S. Polymorphism and piezoelectricity of glycine nano-crystals grown inside alumina nano-pores. J Mater Sci 2019;54:4619-25.

24. Isakov D, Gomes EDM, Bdikin I, et al. Production of polar β-glycine nanofibers with enhanced nonlinear optical and piezoelectric properties. Cryst Growth Des 2011;11:4288-91.

25. Hosseini ES, Manjakkal L, Shakthivel D, Dahiya R. Glycine-chitosan-based flexible biodegradable piezoelectric pressure sensor. ACS Appl Mater Interfaces 2020;12:9008-16.

26. Yang F, Li J, Long Y, et al. Wafer-scale heterostructured piezoelectric bio-organic thin films. Science 2021;373:337-42.

27. Guerin S, O'Donnell J, Haq EU, et al. Racemic amino acid piezoelectric transducer. Phys Rev Lett 2019;122:047701.

28. Shrout TR, Zhang SJ. Lead-free piezoelectric ceramics: alternatives for PZT? J Electroceram 2007;19:113-26.

29. Reches M, Gazit E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 2003;300:625-7.

30. Yan X, Zhu P, Li J. Self-assembly and application of diphenylalanine-based nanostructures. Chem Soc Rev 2010;39:1877-90.

31. Kholkin A, Amdursky N, Bdikin I, Gazit E, Rosenman G. Strong piezoelectricity in bioinspired peptide nanotubes. ACS Nano 2010;4:610-4.

32. Amdursky N, Beker P, Schklovsky J, Gazit E, Rosenman G. Ferroelectric and related phenomena in biological and bioinspired nanostructures. Ferroelectrics 2010;399:107-17.

33. Vasilev S, Zelenovskiy P, Vasileva D, Nuraeva A, Shur VY, Kholkin AL. Piezoelectric properties of diphenylalanine microtubes prepared from the solution. J Phys Chem Solids 2016;93:68-72.

34. Tao Z, Yuan H, Ding S, Wang Y, Hu W, Yang R. Diphenylalanine-based degradable piezoelectric nanogenerators enabled by polylactic acid polymer-assisted transfer. Nano Energy 2021;88:106229.

35. Anderson J, Lake PT, McCullagh M. Initial aggregation and ordering mechanism of diphenylalanine from microsecond all-atom molecular dynamics simulations. J Phys Chem B 2018;122:12331-41.

36. Nguyen V, Jenkins K, Yang R. Epitaxial growth of vertically aligned piezoelectric diphenylalanine peptide microrods with uniform polarization. Nano Energy 2015;17:323-9.

37. Nguyen V, Zhu R, Jenkins K, Yang R. Self-assembly of diphenylalanine peptide with controlled polarization for power generation. Nat Commun 2016;7:13566.

38. Maziati Akmal MH, Ahmad FB, Hisham F, Hazmi AT. Advanced technology for the conversion of waste into fuels and chemicals. In: Khan A, Pizzi A, Jawaid M, et al., editors. 16-Biopolymer-based waste for biomaterials thin film in piezoelectric application. Woodhead Publishing; 2021. pp. 355-81.

39. Bera S, Guerin S, Yuan H, et al. Molecular engineering of piezoelectricity in collagen-mimicking peptide assemblies. Nat Commun 2021;12:2634.

40. Yucel T, Cebe P, Kaplan DL. Structural origins of silk piezoelectricity. Adv Funct Mater 2011;21:779-85.

41. Zhou Z, Qian D, Minary-Jolandan M. Molecular Mechanism of polarization and piezoelectric effect in super-twisted collagen. ACS Biomater Sci Eng 2016;2:929-36.

42. Ghosh SK, Mandal D. High-performance bio-piezoelectric nanogenerator made with fish scale. Appl Phys Lett 2016;109:103701.

43. Yan Y, Kim W, Ma X, et al. Nanogenerators facilitated piezoelectric and flexoelectric characterizations for bioinspired energy harvesting materials. Nano Energy 2021;81:105607.

44. Liu Y, Cai HL, Zelisko M, et al. Ferroelectric switching of elastin. Proc Natl Acad Sci USA 2014;111:E2780-6.

45. Wang R, Sui J, Wang X. Natural piezoelectric biomaterials: a biocompatible and sustainable building block for biomedical devices. ACS Nano 2022;16:17708-28.

46. Stapleton A, Noor MR, Sweeney J, et al. The direct piezoelectric effect in the globular protein lysozyme. Appl Phys Lett 2017;111:142902.

47. Karan SK, Maiti S, Kwon O, et al. Nature driven spider silk as high energy conversion efficient bio-piezoelectric nanogenerator. Nano Energy 2018;49:655-66.

48. Kim D, Han SA, Kim JH, Lee JH, Kim SW, Lee SW. Biomolecular piezoelectric materials: from amino acids to living tissues. Adv Mater 2020;32:e1906989.

49. Ghosh SK, Park J, Na S, Kim MP, Ko H. A fully biodegradable ferroelectric skin sensor from edible porcine skin gelatine. Adv Sci 2021;8:2005010.

50. Smith GP, Petrenko VA. Phage display. Chem Rev 1997;97:391-410.

51. Dogic Z, Fraden S. Smectic phase in a colloidal suspension of semiflexible virus particles. Phys Rev Lett 1997;78:2417-20.

52. Lee BY, Zhang J, Zueger C, et al. Virus-based piezoelectric energy generation. Nat Nanotechnol 2012;7:351-6.

53. Shin D, Han HJ, Kim W, et al. Bioinspired piezoelectric nanogenerators based on vertically aligned phage nanopillars. Energy Environ Sci 2015;8:3198-203.

54. Lee JH, Lee JH, Xiao J, Desai MS, Zhang X, Lee SW. Vertical self-assembly of polarized phage nanostructure for energy harvesting. Nano Lett 2019;19:2661-7.

55. Park IW, Kim KW, Hong Y, et al. Recent developments and prospects of M13-bacteriophage based piezoelectric energy harvesting devices. Nanomaterials 2020;10:93.

56. Zhang J, Duan Y, Sato H, et al. Crystal modifications and thermal behavior of poly(l-lactic acid) revealed by infrared spectroscopy. Macromolecules 2005;38:8012-21.

57. Wang H, Zhang J, Tashiro K. Phase transition mechanism of poly(l-lactic acid) among the α, δ, and β forms on the basis of the reinvestigated crystal structure of the β form. Macromolecules 2017;50:3285-300.

58. Shin DM, Hong SW, Hwang YH. Recent advances in organic piezoelectric biomaterials for energy and biomedical applications. Nanomaterials 2020;10:123.

59. Shao J, Sun J, Bian X, et al. Modified PLA homochiral crystallites facilitated by the confinement of PLA stereocomplexes. Macromolecules 2013;46:6963-71.

60. Cartier L, Okihara T, Ikada Y, Tsuji H, Puiggali J, Lotz B. Epitaxial crystallization and crystalline polymorphism of polylactides. Polymer 2000;41:8909-19.

61. Ochiai T, Fukada E. Electromechanical properties of poly-L-lactic acid. Jpn J Appl Phys 1998;37:3374.

62. Babichuk IS, Lin C, Qiu Y, et al. Raman mapping of piezoelectric poly(l-lactic acid) films for force sensors. RSC Adv 2022;12:27687-97.

63. Mat Zin S, Velayutham T, Furukawa T, et al. Quantitative study on the face shear piezoelectricity and its relaxation in uniaxially-drawn and annealed poly-l-lactic acid. Polymer 2022;254:125095.

64. Lovell CS, Fitz-gerald JM, Park C. Decoupling the effects of crystallinity and orientation on the shear piezoelectricity of polylactic acid. J Polym Sci B Polym Phys 2011;49:1555-62.

65. Tajitsu Y. Development of environmentally friendly piezoelectric polymer film actuator having multilayer structure. Jpn J Appl Phys 2016;55:04EA07.

66. Mossi KM, Selby GV, Bryant RG. Thin-layer composite unimorph ferroelectric driver and sensor properties. Mater Lett 1998;35:39-49.

67. Curry EJ, Ke K, Chorsi MT, et al. Biodegradable piezoelectric force sensor. Proc Natl Acad Sci USA 2018;115:909-14.

68. Nalwa HS. Ferroelectric polymers: chemistry: physics, and applications. Nalwa HS: Boca Raton; 1995.

69. Lee SJ, Arun AP, Kim KJ. Piezoelectric properties of electrospun poly(l-lactic acid) nanofiber web. Mater Lett 2015;148:58-62.

70. Zhao G, Huang B, Zhang J, Wang A, Ren K, Wang ZL. Electrospun poly(l-lactic acid) nanofibers for nanogenerator and diagnostic sensor applications. Macromol Mater Eng 2017;302:1600476.

71. Sultana A, Ghosh SK, Sencadas V, et al. Human skin interactive self-powered wearable piezoelectric bio-e-skin by electrospun poly-l-lactic acid nanofibers for non-invasive physiological signal monitoring. J Mater Chem B 2017;5:7352-9.

72. Curry EJ, Le TT, Das R, et al. Biodegradable nanofiber-based piezoelectric transducer. Proc Natl Acad Sci USA 2020;117:214-20.

73. Imoto K, Date M, Fukada E, et al. Piezoelectric motion of poly(l-lactic acid) film improved by supercritical CO2 treatment. Jpn J Appl Phys 2009;48:09KE06.

74. Sawano M, Tahara K, Orita Y, Nakayama M, Tajitsu Y. New design of actuator using shear piezoelectricity of a chiral polymer, and prototype device: actuator using shear piezoelectricity of a chiral polymer. Polym Int 2010;59:365-70.

75. Fukada E. History and recent progress in piezoelectric polymers. IEEE Trans Ultrason Ferr 2000;47:1277-90.

76. Ribeiro C, Sencadas V, Correia DM, Lanceros-Méndez S. Piezoelectric polymers as biomaterials for tissue engineering applications. Colloids Surf B 2015;136:46-55.

77. Fukada E, Ando Y. Piezoelectric properties of poly-β-hydroxybutyrate and copolymers of β-hydroxybutyrate and β-hydroxyvalerate. Int J Biol Macromol 1986;8:361-6.

78. Chernozem R, Guselnikova O, Surmeneva M, et al. Diazonium chemistry surface treatment of piezoelectric polyhydroxybutyrate scaffolds for enhanced osteoblastic cell growth. Appl Mater Today 2020;20:100758.

79. Urakami T, Imagawa S, Harada M, Iwamoto A, Tokiwa Y. Development of biodegradable plastic-poly-β-hydroxybutyrate/polycaprolactone blend polymer. Kobunshi Ronbunshu 2000;57:263-70.

80. García Y, Ruiz-Blanco YB, Marrero-Ponce Y, Sotomayor-Torres CM. Orthotropic piezoelectricity in 2D nanocellulose. Sci Rep 2016;6:34616.

81. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 2011;40:3941-94.

82. Csoka L, Hoeger IC, Rojas OJ, Peszlen I, Pawlak JJ, Peralta PN. Piezoelectric effect of cellulose nanocrystals thin films. ACS Macro Lett 2012;1:867-70.

83. Maiti S, Kumar Karan S, Lee J, Kumar Mishra A, Bhusan Khatua B, Kon Kim J. Bio-waste onion skin as an innovative nature-driven piezoelectric material with high energy conversion efficiency. Nano Energy 2017;42:282-93.

84. Rajala S, Siponkoski T, Sarlin E, et al. Cellulose nanofibril film as a piezoelectric sensor material. ACS Appl Mater Interfaces 2016;8:15607-14.

85. Sierra DL, Bdikin I, Tkach A, Vilarinho PM, Nunes C, Ferreira P. Flexible piezoelectric chitosan and barium titanate biocomposite films for sensor applications. Eur J Inorg Chem 2021;2021:792-803.

86. de Marzo G, Mastronardi VM, Algieri L, et al. Sustainable, flexible, and biocompatible enhanced piezoelectric chitosan thin film for compliant piezosensors for human health. Adv Electron Mater 2022:2200069.

87. Jacob J, More N, Kalia K, Kapusetti G. Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflamm Regen 2018;38:2.

88. Hoque NA, Thakur P, Biswas P, et al. Biowaste crab shell-extracted chitin nanofiber-based superior piezoelectric nanogenerator. J Mater Chem A 2018;6:13848-58.

89. Zhukov S, Ma X, Seggern HV, et al. Biodegradable cellular polylactic acid ferroelectrets with strong longitudinal and transverse piezoelectricity. Appl Phys Lett 2020;117:112901.

90. Gao X, Huang L, Wang B, et al. Natural materials assembled, biodegradable, and transparent paper-based electret nanogenerator. ACS Appl Mater Interfaces 2016;8:35587-92.

91. Mohebbi A, Mighri F, Ajji A, Rodrigue D. Cellular polymer ferroelectret: a review on their development and their piezoelectric properties. Adv Polym Technol 2018;37:468-83.

92. Ouassim H, Frej M, Denis R. Piezoelectric cellular polymer films: fabrication, properties and applications. AIMS Mater Sci 2018;5:845-69.

93. Felig P. Amino acid metabolism in man. Annu Rev Biochem 1975;44:933-55.

94. Tóthová L, Bábíčková J, Celec P. Phage survival: the biodegradability of M13 phage display library in vitro. Biotechnol Appl Biochem 2012;59:490-4.

95. Merzlyak A, Indrakanti S, Lee SW. Genetically engineered nanofiber-like viruses for tissue regenerating materials. Nano Lett 2009;9:846-52.

96. Hajitou A, Trepel M, Lilley CE, et al. A hybrid vector for ligand-directed tumor targeting and molecular imaging. Cell 2006;125:385-98.

97. Walton M, Cotton NJ. Long-term in vivo degradation of poly-L-lactide (PLLA) in bone. J Biomater Appl 2007;21:395-411.

98. Bos RR, Rozema FR, Boering G, et al. Degradation of and tissue reaction to biodegradable poly(L-lactide) for use as internal fixation of fractures: a study in rats. Biomaterials 1991;12:32-6.

99. Bergsma JE, de Bruijn WC, Rozema FR, Bos RR, Boering G. Late degradation tissue response to poly(L-lactide) bone plates and screws. Biomaterials 1995;16:25-31.

100. Beguin P. The biological degradation of cellulose. FEMS Microbiol Rev 1994;13:25-58.

101. Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B. In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A 2006;76:431-8.

102. Zhou H, Zhang Y, Qiu Y, et al. Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices. Biosens Bioelectron 2020;168:112569.

103. Marino A, Genchi GG, Sinibaldi E, Ciofani G. Piezoelectric effects of materials on bio-interfaces. ACS Appl Mater Interfaces 2017;9:17663-80.

104. Jenkins K, Kelly S, Nguyen V, Wu Y, Yang R. Piezoelectric diphenylalanine peptide for greatly improved flexible nanogenerators. Nano Energy 2018;51:317-23.

105. Lee JH, Heo K, Schulz-Schönhagen K, et al. Diphenylalanine peptide nanotube energy harvesters. ACS Nano 2018;12:8138-44.

106. Zhao C, Zhang J, Wang ZL, Ren K. A poly(l-lactic acid) polymer-based thermally stable cantilever for vibration energy harvesting applications. Adv Sustain Syst 2017;1:1700068.

107. Hu D, Yao M, Fan Y, Ma C, Fan M, Liu M. Strategies to achieve high performance piezoelectric nanogenerators. Nano Energy 2019;55:288-304.

108. Wu C, Wang AC, Ding W, Guo H, Wang ZL. Triboelectric nanogenerator: a foundation of the energy for the new era. Adv Energy Mater 2019;9:1802906.

109. Xu Q, Gao X, Zhao S, et al. Construction of bio-piezoelectric platforms: from structures and synthesis to applications. Adv Mater 2021;33:e2008452.

110. Olvera D, Monaghan MG. Electroactive material-based biosensors for detection and drug delivery. Adv Drug Deliv Rev 2021;170:396-424.

111. Mahapatra SD, Mohapatra PC, Aria AI, et al. Piezoelectric materials for energy harvesting and sensing applications: roadmap for future smart materials. Adv Sci 2021;8:e2100864.

112. Tajitsu Y. Development of electric control catheter and tweezers for thrombosis sample in blood vessels using piezoelectric polymeric fibers. Polym Adv Technol 2006;17:907-13.

113. Liu J, Li W, Jia J, et al. Structure-regenerated silk fibroin with boosted piezoelectricity for disposable and biodegradable oral healthcare device. Nano Energy 2022;103:107787.

114. Kim K, Ha M, Choi B, et al. Biodegradable, electro-active chitin nanofiber films for flexible piezoelectric transducers. Nano Energy 2018;48:275-83.

115. Ben Dali O, Zhukov S, Rutsch M, et al. Biodegradable 3D-printed ferroelectret ultrasonic transducer with large output pressure. IEEE Int Ultra Sym 2021:1-4.

116. Whited JL, Levin M. Bioelectrical controls of morphogenesis: from ancient mechanisms of cell coordination to biomedical opportunities. Curr Opin Genet Dev 2019;57:61-9.

117. Goonoo N, Bhaw-luximon A. Piezoelectric polymeric scaffold materials as biomechanical cellular stimuli to enhance tissue regeneration. Mater Today Commun 2022;31:103491.

118. Kapat K, Shubhra QTH, Zhou M, Leeuwenburgh S. Piezoelectric nano-biomaterials for biomedicine and tissue regeneration. Adv Funct Mater 2020;30:1909045.

119. Khare D, Basu B, Dubey AK. Electrical stimulation and piezoelectric biomaterials for bone tissue engineering applications. Biomaterials 2020;258:120280.

120. Shimono T, Matsunaga S, Fukada E, Hattori T, Shikinami Y. The effects of piezoelectric poly-L-lactic acid films in promoting ossification in vivo. In Vivo 1996;10:471-6.

121. Chen Y, Mak AF, Wang M, Li J, Wong M. PLLA scaffolds with biomimetic apatite coating and biomimetic apatite/collagen composite coating to enhance osteoblast-like cells attachment and activity. Surf Coat Technol 2006;201:575-80.

122. Prabhakaran MP, Venugopal J, Ramakrishna S. Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomater 2009;5:2884-93.

123. Kramp B, Bernd HE, Schumacher WA, et al. [Poly-beta-hydroxybutyric acid (PHB) films and plates in defect covering of the osseus skull in a rabbit model]. Laryngorhinootologie 2002;81:351-6.

124. Wang YW, Wu Q, Chen GQ. Attachment, proliferation and differentiation of osteoblasts on random biopolyester poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds. Biomaterials 2004;25:669-75.

125. Ye C, Hu P, Ma MX, Xiang Y, Liu RG, Shang XW. PHB/PHBHHx scaffolds and human adipose-derived stem cells for cartilage tissue engineering. Biomaterials 2009;30:4401-6.

126. Rocha LB, Goissis G, Rossi MA. Biocompatibility of anionic collagen matrix as scaffold for bone healing. Biomaterials 2002;23:449-56.

127. Moreira PL, An YH, Santos AR Jr, Genari SC. In vitro analysis of anionic collagen scaffolds for bone repair. J Biomed Mater Res B Appl Biomater 2004;71:229-37.

128. Amaral IF, Cordeiro AL, Sampaio P, Barbosa MA. Attachment, spreading and short-term proliferation of human osteoblastic cells cultured on chitosan films with different degrees of acetylation. J Biomater Sci Polym Ed 2007;18:469-85.

129. Das R, Curry EJ, Le TT, et al. Biodegradable nanofiber bone-tissue scaffold as remotely-controlled and self-powering electrical stimulator. Nano Energy 2020;76:105028.

130. Liu Y, Dzidotor G, Le TT, et al. Exercise-induced piezoelectric stimulation for cartilage regeneration in rabbits. Sci Transl Med 2022;14:eabi7282.

131. Liu L, Chen B, Liu K, et al. Wireless manipulation of magnetic/piezoelectric micromotors for precise neural stem-like cell stimulation. Adv Funct Mater 2020;30:1910108.

132. Zhao D, Feng PJ, Liu JH, et al. Electromagnetized-nanoparticle-modulated neural plasticity and recovery of degenerative dopaminergic neurons in the mid-brain. Adv Mater 2020;32:e2003800.

133. Du L, Li T, Jin F, et al. Design of high conductive and piezoelectric poly(3,4-ethylenedioxythiophene)/chitosan nanofibers for enhancing cellular electrical stimulation. J Colloid Interface Sci 2020;559:65-75.

134. Zuo KJ, Gordon T, Chan KM, Borschel GH. Electrical stimulation to enhance peripheral nerve regeneration: update in molecular investigations and clinical translation. Exp Neurol 2020;332:113397.

135. Huang J, Ye Z, Hu X, Lu L, Luo Z. Electrical stimulation induces calcium-dependent release of NGF from cultured Schwann cells. Glia 2010;58:622-31.

136. Wu P, Chen P, Xu C, et al. Ultrasound-driven in vivo electrical stimulation based on biodegradable piezoelectric nanogenerators for enhancing and monitoring the nerve tissue repair. Nano Energy 2022;102:107707.

137. Chen P, Xu C, Wu P, et al. Wirelessly powered electrical-stimulation based on biodegradable 3D piezoelectric scaffolds promotes the spinal cord injury repair. ACS Nano 2022;16:16513-28.

138. Yang F, Murugan R, Ramakrishna S, Wang X, Ma YX, Wang S. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 2004;25:1891-900.

139. Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005;26:2603-10.

140. Chen W, Tong YW. PHBV microspheres as neural tissue engineering scaffold support neuronal cell growth and axon-dendrite polarization. Acta Biomater 2012;8:540-8.

141. Naseri-Nosar M, Salehi M, Hojjati-Emami S. Cellulose acetate/poly lactic acid coaxial wet-electrospun scaffold containing citalopram-loaded gelatin nanocarriers for neural tissue engineering applications. Int J Biol Macromol 2017;103:701-8.

142. Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci 2006;31:603-32.

143. Kuo YC, Yeh CF, Yang JT. Differentiation of bone marrow stromal cells in poly(lactide-co-glycolide)/chitosan scaffolds. Biomaterials 2009;30:6604-13.

144. Wang S, Sun C, Guan S, et al. Chitosan/gelatin porous scaffolds assembled with conductive poly(3,4-ethylenedioxythiophene) nanoparticles for neural tissue engineering. J Mater Chem B 2017;5:4774-88.

145. Eltom A, Zhong G, Muhammad A. Scaffold techniques and designs in tissue engineering functions and purposes: a review. Adv Mater Sci Eng 2019;2019:1-13.

146. Ceballos D, Navarro X, Dubey N, Wendelschafer-Crabb G, Kennedy WR, Tranquillo RT. Magnetically aligned collagen gel filling a collagen nerve guide improves peripheral nerve regeneration. Exp Neurol 1999;158:290-300.

147. Bian YZ, Wang Y, Aibaidoula G, Chen GQ, Wu Q. Evaluation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration. Biomaterials 2009;30:217-25.

148. Yucel D, Kose GT, Hasirci V. Polyester based nerve guidance conduit design. Biomaterials 2010;31:1596-603.

149. Niu Y, Stadler FJ, Fu M. Biomimetic electrospun tubular PLLA/gelatin nanofiber scaffold promoting regeneration of sciatic nerve transection in SD rat. Mater Sci Eng C Mater Biol Appl 2021;121:111858.

150. Jiang Z, Song Y, Qiao J, et al. Rat sciatic nerve regeneration across a 10-mm defect bridged by a chitin/CM-chitosan artificial nerve graft. Int J Biol Macromol 2019;129:997-1005.

151. Cafarelli A, Marino A, Vannozzi L, et al. Piezoelectric nanomaterials activated by ultrasound: the pathway from discovery to future clinical adoption. ACS Nano 2021;15:11066-86.

152. Genchi GG, Ceseracciu L, Marino A, et al. P(VDF-TrFE)/BaTiO3 nanoparticle composite films mediate piezoelectric stimulation and promote differentiation of SH-SY5Y neuroblastoma cells. Adv Healthc Mater 2016;5:1808-20.

153. Hoop M, Chen XZ, Ferrari A, et al. Ultrasound-mediated piezoelectric differentiation of neuron-like PC12 cells on PVDF membranes. Sci Rep 2017;7:4028.

154. Zaszczynska A, Sajkiewicz P, Gradys A. Piezoelectric scaffolds as smart materials for neural tissue engineering. Polymers 2020;12:161.

155. Ashrafi M, Alonso-Rasgado T, Baguneid M, Bayat A. The efficacy of electrical stimulation in experimentally induced cutaneous wounds in animals. Vet Dermatol 2016;27:235-e257.

156. Park YR, Sultan MT, Park HJ, et al. NF-κB signaling is key in the wound healing processes of silk fibroin. Acta Biomater 2018;67:183-95.

157. Chen Y, Ye M, Song L, et al. Piezoelectric and photothermal dual functional film for enhanced dermal wound regeneration via upregulation of Hsp90 and HIF-1α. Appl Mater Today 2020;20:100756.

158. Deng Q, Liu L, Sharma P. Flexoelectricity in soft materials and biological membranes. J Mech Phys Solids 2014;62:209-27.

159. Grasinger M, Mozaffari K, Sharma P. Flexoelectricity in soft elastomers and the molecular mechanisms underpinning the design and emergence of giant flexoelectricity. Proc Natl Acad Sci USA 2021:118.

160. Wang B, Yang S, Sharma P. Flexoelectricity as a universal mechanism for energy harvesting from crumpling of thin sheets. Phys Rev B 2019:100.

161. Rahmati AH, Yang S, Bauer S, Sharma P. Nonlinear bending deformation of soft electrets and prospects for engineering flexoelectricity and transverse d(31) piezoelectricity. Soft Matter 2018;15:127-48.

162. Jiang X, Huang W, Zhang S. Flexoelectric nano-generator: materials, structures and devices. Nano Energy 2013;2:1079-92.

163. Abdollahi A, Arias I. Constructive and destructive interplay between piezoelectricity and flexoelectricity in flexural sensors and actuators. J Appl Mech 2015;82:121003.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/