REFERENCES

1. Johnson I, Choate WT, Davidson A. Waste heat recovery. In technology and opportunities in US industry. Laurel, MD: BCS, Inc.; 2008. Available from: https://www1.eere.energy.gov/manufacturing/intensiveprocesses/pdfs/waste_heat_recovery.pdf [Last accessed on 6 Jan 2023].

2. Farhat O, Faraj J, Hachem F, Castelain C, Khaled M. A recent review on waste heat recovery methodologies and applications: comprehensive review, critical analysis and potential recommendations. Clean Eng Technol 2022;6:100387.

3. Energy DO. Industrial heat pumps for steam and fuel saving 2014. Available from: https://www.energy.gov/sites/prod/files/2014/05/f15/heatpump.pdf [Last accessed on 6 Jan 2023].

4. Wang N, Ni L, Wang A, Shan H, Jia H, Zuo L. High-efficiency photovoltaic-thermoelectric hybrid energy harvesting system based on functionally multiplexed intelligent thermal management. Energy Convers Manag 2022;272:116377.

5. Wang N, Gao C, Ding C, Jia H, Sui G, Gao X. A thermal management system to reuse thermal waste released by high-power light-emitting diodes. IEEE Trans Electron Devices 2019;66:4790-7.

6. Wang Y, Shi Y, Mei D, Chen Z. Wearable thermoelectric generator for harvesting heat on the curved human wrist. Appl Energy 2017;205:710-9.

7. Ren W, Sun Y, Zhao D, et al. High-performance wearable thermoelectric generator with self-healing, recycling, and Lego-like reconfiguring capabilities. Sci Adv 2021;7:eabe0586.

8. Kim CS, Yang HM, Lee J, et al. Self-powered wearable electrocardiography using a wearable thermoelectric power generator. ACS Energy Lett 2018;3:501-7.

9. Deng W, Deng L, Hu Y, Zhang Y, Chen G. Thermoelectric and mechanical performances of ionic liquid-modulated PEDOT:PSS/SWCNT composites at high temperatures. Soft Sci 2022;1:14.

10. Zou Q, Shang H, Huang D, et al. Improved thermoelectric performance in n-type flexible Bi2Se3+x/PVDF composite films. Soft Sci 2021;1:2.

11. Satoh N, Otsuka M, Kawakita J, Mori T. A hierarchical design for thermoelectric hybrid materials: Bi2Te3 particles covered by partial Au skins enhance thermoelectric performance in sticky thermoelectric materials. Soft Sci 2022;2:15.

12. Cao J, Zheng J, Liu H, et al. Flexible elemental thermoelectrics with ultra-high power density. Mater Today Energy 2022;25:100964.

13. Jia N, Cao J, Tan XY, et al. Suppressing Ge-vacancies to achieve high single-leg efficiency in GeTe with an ultra-high room temperature power factor. J Mater Chem A 2021;9:23335-44.

14. Suwardi A, Cao J, Zhao Y, et al. Achieving high thermoelectric quality factor toward high figure of merit in GeTe. Mater Today Phys 2020;14:100239.

15. Mao J, Zhu H, Ding Z, et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials. Science 2019;365:495-8.

16. Chen C, Shen D, Xia C, et al. Integrating band engineering with point defect scattering for high thermoelectric performance in Bi2Si2Te6. Chem Eng J 2022;441:135968.

17. Pei Y, Zheng L, Li W, et al. Interstitial point defect scattering contributing to high thermoelectric performance in SnTe. Adv Electron Mater 2016;2:1600019.

18. Liang G, Zheng Z, Li F, et al. Nano structure Ti-doped skutterudite CoSb3 thin films through layer inter-diffusion for enhanced thermoelectric properties. J Eur Ceram Soc 2019;39:4842-9.

19. Wu H, Lu X, Wang G, et al. Strong lattice anharmonicity securing intrinsically low lattice thermal conductivity and high performance thermoelectric SnSb2Te4 via Se alloying. Nano Energy 2020;76:105084.

20. Abbas FI, Yamashita A, Hoshi K, et al. Investigation of lattice anharmonicity in thermoelectric LaOBiS2-xSex through Grüneisen parameter. Appl Phys Express 2021;14:071002.

21. Jia N, Cao J, Tan XY, et al. Thermoelectric materials and transport physics. Mater Today Phys 2021;21:100519.

22. Zhang D, Lim WYS, Duran SSF, Loh XJ, Suwardi A. Additive Manufacturing of thermoelectrics: emerging trends and outlook. ACS Energy Lett 2022;7:720-35.

23. Zhu Q, Wang S, Wang X, et al. Bottom-up engineering strategies for high-performance thermoelectric materials. Nanomicro Lett 2021;13:119.

24. Zhuang H, Pei J, Cai B, et al. Thermoelectric performance enhancement in BiSbTe alloy by microstructure modulation via cyclic spark plasma sintering with liquid phase. Adv Funct Mater 2021;31:2009681.

25. Cai B, Zhuang H, Pei J, et al. Spark plasma sintered Bi-Sb-Te alloys derived from ingot scrap: maximizing thermoelectric performance by tailoring their composition and optimizing sintering time. Nano Energy 2021;85:106040.

26. Xin N, Li Y, Shen H, Shen L, Tang G. Realizing high thermoelectric performance in hot-pressed polycrystalline AlxSn1-xSe through band engineering tuning. J Materiomics 2022;8:475-88.

27. Sturm C, Boccalon N, Assoud A, Zou T, Kycia J, Kleinke H. Thermoelectric properties of hot-pressed Ba3Cu14-δTe12. Inorg Chem 2021;60:12781-9.

28. Leonov V. Thermoelectric energy harvesting of human body heat for wearable sensors. IEEE Sensors J 2013;13:2284-91.

29. Kumar S, Gupta A, Yadav G, Singh HP. Peltier module for refrigeration and heating using embedded system, In 2015 international conference on recent developments in control, Automation and Power Engineering (RDCAPE), Noida, India, 12-13 March 2015; pp. 314-9.

30. Chang P, Liao C. Screen-printed flexible thermoelectric generator with directional heat collection design. J Alloys Compd 2020;836:155471.

31. Cao Z, Koukharenko E, Tudor M, Torah R, Beeby S. Flexible screen printed thermoelectric generator with enhanced processes and materials. Sensors Actuat A Phys 2016;238:196-206.

32. Pelegrini S, Adami A, Collini C, et al. In simulation, design and fabrication of a planar micro thermoelectric generator, smart sensors, actuators, and MEMS VI. SPIE; 2013; pp. 519-26.

33. Lourdes Gonzalez-juarez M, Flores E, Martin-gonzalez M, Nandhakumar I, Bradshaw D. Electrochemical deposition and thermoelectric characterisation of a semiconducting 2-D metal-organic framework thin film. J Mater Chem A 2020;8:13197-206.

34. Shen H, Lee H, Han S. Optimization and fabrication of a planar thermoelectric generator for a high-performance solar thermoelectric generator. Curr Appl Phys 2021;22:6-13.

35. Goncalves LM, Rocha JG, Couto C, et al. Fabrication of flexible thermoelectric microcoolers using planar thin-film technologies. J Micromech Microeng 2007;17:S168-73.

36. Kogo G, Xiao B, Danquah S, et al. A thin film efficient pn-junction thermoelectric device fabricated by self-align shadow mask. Sci Rep 2020;10:1067.

37. Junlabhut P, Nuthongkum P, Sakulkalavek A, Harnwunggmoung A, Limsuwan P, Sakdanuphab R. Enhancing the thermoelectric properties of sputtered Sb2Te3 thick films via post-annealing treatment. Surf Coat Technol 2020;387:125510.

38. Owoyele O, Ferguson S, O’connor BT. Performance analysis of a thermoelectric cooler with a corrugated architecture. Appl Energy 2015;147:184-91.

39. Rösch AG, Gall A, Aslan S, et al. Fully printed origami thermoelectric generators for energy-harvesting. NPJ Flex Electron 2021:5.

40. Huu T, Nguyen Van T, Takahito O. Flexible thermoelectric power generator with Y-type structure using electrochemical deposition process. Appl Energy 2018;210:467-76.

41. Sun T, Zhou B, Zheng Q, Wang L, Jiang W, Snyder GJ. Stretchable fabric generates electric power from woven thermoelectric fibers. Nat Commun 2020;11:572.

42. Andjela L, Abdurahmanovich VM, Vladimirovna SN, Mikhailovna GI, Yurievich DD, Alekseevna MY. A review on vat photopolymerization 3D-printing processes for dental application. Dent Mater 2022;38:e284-96.

43. Methani MM, Cesar PF, de Paula Miranda RB, Morimoto S, Özcan M, Revilla-león M. Additive manufacturing in dentistry: current technologies, clinical applications, and limitations. Curr Oral Health Rep 2020;7:327-34.

44. Najmon JC, Raeisi S, Tovar A. Review of additive manufacturing technologies and applications in the aerospace industry. In Additive manufacturing for the aerospace industry. 2019; pp. 7-31.

45. Kim F, Yang SE, Ju H, et al. Direct ink writing of three-dimensional thermoelectric microarchitectures. Nat Electron 2021;4:579-87.

46. Su N, Zhu P, Pan Y, Li F, Li B. 3D-printing of shape-controllable thermoelectric devices with enhanced output performance. Energy 2020;195:116892.

47. Yang SE, Kim F, Ejaz F, et al. Composition-segmented BiSbTe thermoelectric generator fabricated by multimaterial 3D printing. Nano Energy 2021;81:105638.

48. Stratasys PolyJet. Available from: https://www.stratasys.com/en/3d-printers/printer-catalog/polyjet/?filter=PolyJet [Last accessed on 6 Jan 2023].

49. Optomec aerosol jet technology. Available from: https://optomec.com/printed-electronics/aerosol-jet-technology/ [Last accessed on 6 Jan 2023].

50. Hoath SD. Fundamentals of inkjet printing: the science of inkjet and droplets. Hoboken, NJ: John Wiley & Sons; 2016.

51. Zhao D, Zhou H, Wang Y, Yin J, Huang Y. Drop-on-demand (DOD) inkjet dynamics of printing viscoelastic conductive ink. Addit Manuf 2021;48:102451.

52. Xu X, Yang J, Jonhson W, et al. Additive manufacturing solidification methodologies for ink formulation. Addit Manuf 2022;56:102939.

53. Fathi S, Dickens P. Jettability of reactive nylon materials for additive manufacturing applications. J Manuf Process 2012;14:403-13.

54. Agarwala S, Goh GL, Yeong WY. Optimizing aerosol jet printing process of silver ink for printed electronics, In IOP Conference series: materials science and engineering; 2017; p. 012027.

55. Dun C, Hewitt CA, Huang H, Montgomery DS, Xu J, Carroll DL. Flexible thermoelectric fabrics based on self-assembled tellurium nanorods with a large power factor. Phys Chem Chem Phys 2015;17:8591-5.

56. Park D, Kim M, Kim J. High-performance PANI-coated Ag2Se nanowire and PVDF thermoelectric composite film for flexible energy harvesting. J Alloys Compd 2021;884:161098.

57. Zeng X, Yan C, Ren L, et al. Silver telluride nanowire assembly for high-performance flexible thermoelectric film and its application in self-powered temperature sensor. Adv Electron Mater 2019;5:1800612.

58. Zhou C, Dun C, Wang Q, et al. Nanowires as building blocks to fabricate flexible thermoelectric fabric: the case of copper telluride nanowires. ACS Appl Mater Interfaces 2015;7:21015-20.

59. Yoo D, Kim J, Lee SH, et al. Effects of one- and two-dimensional carbon hybridization of PEDOT:PSS on the power factor of polymer thermoelectric energy conversion devices. J Mater Chem A 2015;3:6526-33.

60. Yu C, Kim YS, Kim D, Grunlan JC. Thermoelectric behavior of segregated-network polymer nanocomposites. Nano Lett 2008;8:4428-32.

61. Kim D, Kim Y, Choi K, Grunlan JC, Yu C. Improved thermoelectric behavior of nanotube-filled polymer composites with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate). ACS Nano 2010;4:513-23.

62. Yao Q, Wang Q, Wang L, Chen L. Abnormally enhanced thermoelectric transport properties of SWNT/PANI hybrid films by the strengthened PANI molecular ordering. Energy Environ Sci 2014;7:3801-7.

63. An CJ, Kang YH, Song H, Jeong Y, Cho SY. High-performance flexible thermoelectric generator by control of electronic structure of directly spun carbon nanotube webs with various molecular dopants. J Mater Chem A 2017;5:15631-9.

64. Qu S, Yao Q, Wang L, Hua J, Chen L. A novel hydrophilic pyridinium salt polymer/SWCNTs composite film for high thermoelectric performance. Polymer 2018;136:149-56.

65. Wang H, Yi SI, Pu X, Yu C. Simultaneously improving electrical conductivity and thermopower of polyaniline composites by utilizing carbon nanotubes as high mobility conduits. ACS Appl Mater Interfaces 2015;7:9589-97.

66. Liu S, Li H, He C. Simultaneous enhancement of electrical conductivity and seebeck coefficient in organic thermoelectric SWNT/PEDOT:PSS nanocomposites. Carbon 2019;149:25-32.

67. Hsu J, Choi W, Yang G, Yu C. Origin of unusual thermoelectric transport behaviors in carbon nanotube filled polymer composites after solvent/acid treatments. Org Electron 2017;45:182-9.

68. Li D, Luo C, Chen Y, et al. High performance polymer thermoelectric composite achieved by carbon-coated carbon nanotubes network. ACS Appl Energy Mater 2019;2:2427-34.

69. Ryu Y, Freeman D, Yu C. High electrical conductivity and n-type thermopower from double-/single-wall carbon nanotubes by manipulating charge interactions between nanotubes and organic/inorganic nanomaterials. Carbon 2011;49:4745-51.

70. Wang H, Hsu JH, Yi SI, et al. Thermally driven large N-type voltage responses from hybrids of carbon nanotubes and poly(3,4-ethylenedioxythiophene) with tetrakis(dimethylamino)ethylene. Adv Mater 2015;27:6855-61.

71. Ryu Y, Yin L, Yu C. Dramatic electrical conductivity improvement of carbon nanotube networks by simultaneous de-bundling and hole-doping with chlorosulfonic acid. J Mater Chem 2012;22:6959.

72. Wu G, Zhang ZG, Li Y, Gao C, Wang X, Chen G. Exploring high-performance n-type thermoelectric composites using amino-substituted rylene dimides and carbon nanotubes. ACS Nano 2017;11:5746-52.

73. Gao C, Chen G. A new strategy to construct thermoelectric composites of SWCNTs and poly-schiff bases with 1,4-diazabuta-1,3-diene structures acting as bidentate-chelating units. J Mater Chem A 2016;4:11299-306.

74. Fan W, Guo C, Chen G. Flexible films of poly(3,4-ethylenedioxythiophene)/carbon nanotube thermoelectric composites prepared by dynamic 3-phase interfacial electropolymerization and subsequent physical mixing. J Mater Chem A 2018;6:12275-80.

75. Meng Q, Cai K, Du Y, Chen L. Preparation and thermoelectric properties of SWCNT/PEDOT:PSS coated tellurium nanorod composite films. J Alloys Compd 2019;778:163-9.

76. Kim J, Lee W, Kang YH, Cho SY, Jang K. Wet-spinning and post-treatment of CNT/PEDOT:PSS composites for use in organic fiber-based thermoelectric generators. Carbon 2018;133:293-9.

77. Zhu B, Liu X, Wang Q, et al. Realizing record high performance in n-type Bi2Te3-based thermoelectric materials. Energy Environ Sci 2020;13:2106-14.

78. Zhao W, Fan S, Xiao N, et al. Flexible carbon nanotube papers with improved thermoelectric properties. Energy Environ Sci 2012;5:5364-9.

79. Yao CJ, Zhang HL, Zhang Q. Recent progress in thermoelectric materials based on conjugated polymers. Polymers 2019;11:107.

80. Zhang Y, Zhang Q, Chen G. Carbon and carbon composites for thermoelectric applications. Carbon Energy 2020;2:408-36.

81. Ou C, Sangle AL, Datta A, et al. Fully printed organic-inorganic nanocomposites for flexible thermoelectric applications. ACS Appl Mater Interfaces 2018;10:19580-7.

82. Ou C, Sangle AL, Chalklen T, Jing Q, Narayan V, Kar-narayan S. Enhanced thermoelectric properties of flexible aerosol-jet printed carbon nanotube-based nanocomposites. APL Mater 2018;6:096101.

83. Ferhat S, Domain C, Vidal J, Noël D, Ratier B, Lucas B. Organic thermoelectric devices based on a stable n-type nanocomposite printed on paper. Sustain Energy Fuels 2018;2:199-208.

84. Jiao F, Di CA, Sun Y, Sheng P, Xu W, Zhu D. Inkjet-printed flexible organic thin-film thermoelectric devices based on p- and n-type poly(metal 1,1,2,2-ethenetetrathiolate)s/polymer composites through ball-milling. Philos Trans Royal Soc A Math Phys Eng Sci 2014;372:20130008.

85. Juntunen T, Jussila H, Ruoho M, et al. Inkjet printed large-area flexible few-layer graphene thermoelectrics. Adv Funct Mater 2018;28:1800480.

86. Chen B, Das SR, Zheng W, et al. Inkjet printing of single-crystalline Bi2Te3 thermoelectric nanowire networks. Adv Electron Mater 2017;3:1600524.

87. Chen B, Kruse M, Xu B, et al. Flexible thermoelectric generators with inkjet-printed bismuth telluride nanowires and liquid metal contacts. Nanoscale 2019;11:5222-30.

88. Wang Y, Liu WD, Gao H, et al. High porosity in nanostructured n-Type Bi2Te3 obtaining ultralow lattice thermal conductivity. ACS Appl Mater Interfaces 2019;11:31237-44.

89. Finefrock SW, Zhang G, Bahk JH, et al. Structure and thermoelectric properties of spark plasma sintered ultrathin PbTe nanowires. Nano Lett 2014;14:3466-73.

90. Cao J, Tan XY, Jia N, et al. Designing good compatibility factor in segmented Bi0.5Sb1.5Te3-GeTe thermoelectrics for high power conversion efficiency. Nano Energy 2022;96:107147.

91. Lee A, Sudau K, Ahn KH, Lee SJ, Willenbacher N. Optimization of experimental parameters to suppress nozzle clogging in inkjet printing. Ind Eng Chem Res 2012;51:13195-204.

92. Liou T, Chan C, Shih K. Effects of actuating waveform, ink property, and nozzle size on piezoelectrically driven inkjet droplets. Microfluid Nanofluid 2010;8:575-86.

93. Calvert P. Inkjet printing for materials and devices. Chem Mater 2001;13:3299-305.

94. Krainer S, Smit C, Hirn U. The effect of viscosity and surface tension on inkjet printed picoliter dots. RSC Adv 2019;9:31708-19.

95. Jang D, Kim D, Moon J. Influence of fluid physical properties on ink-jet printability. Langmuir 2009;25:2629-35.

96. Zhang Y, Hu G, Liu Y, Wang J, Yang G, Li D. Suppression and utilization of satellite droplets for inkjet printing: a review. Processes 2022;10:932.

97. Morrison NF, Harlen OG. Viscoelasticity in inkjet printing. Rheol Acta 2010;49:619-32.

98. He P, Derby B. Controlling coffee ring formation during drying of inkjet printed 2D inks. Adv Mater Interfaces 2017;4:1700944.

99. Still T, Yunker PJ, Yodh AG. Surfactant-induced Marangoni eddies alter the coffee-rings of evaporating colloidal drops. Langmuir 2012;28:4984-8.

100. Takagi Y, Nobusa Y, Gocho S, et al. Inkjet printing of aligned single-walled carbon-nanotube thin films. Appl Phys Lett 2013;102:143107.

101. Goh GL, Agarwala S, Yeong WY. Aerosol-jet-printed preferentially aligned carbon nanotube twin-lines for printed electronics. ACS Appl Mater Interfaces 2019;11:43719-30.

102. Hendricks T, Choate WT. Engineering scoping study of thermoelectric generator systems for industrial waste heat recovery. Richland, WA: Pacific Northwest National Lab; 2006.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/