REFERENCES

1. Pisana S, Lazzeri M, Casiraghi C, et al. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat Mater 2007;6:198-201.

2. Geim AK, Novoselov KS. The rise of graphene. Nat Mater 2007;6:183-91.

3. Nair RR, Blake P, Grigorenko AN, et al. Fine structure constant defines visual transparency of graphene. Science 2008;320:1308.

4. Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008;321:385-8.

5. Liu T, Asheghi M, Goodson KE. Performance and manufacturing of silicon-based vapor chambers. Appl Mech Rev 2021;73:010802.

6. Zhu Y, Schenk M, Filipov ET. A review on origami simulations: from kinematics, to mechanics, toward multiphysics. Appl Mech Rev 2022;74:030801.

7. Carcavilla A, Zaki W. Fatigue of shape memory alloys with emphasis on additively manufactured NiTi components. Appl Mech Rev 2022;74:040801.

8. Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science 2004;306:666-9.

9. Yi M, Shen Z. A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A 2015;3:11700-15.

10. Huang Y, Pan YH, Yang R, et al. Universal mechanical exfoliation of large-area 2D crystals. Nat Commun 2020;11:2453.

11. Chang YM, Kim H, Lee JH, et al. Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers. Appl Phys Lett 2010;97:211102.

12. Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene. Carbon 2010;48:2127-50.

13. Zhang Y, Zhang L, Zhou C. Review of chemical vapor deposition of graphene and related applications. ACC Chem Res 2013;46:2329-39.

14. Sun J, Chen Y, Priydarshi MK, et al. Direct chemical vapor deposition-derived graphene glasses targeting wide ranged applications. Nano Lett 2015;15:5846-54.

15. Sun J, Chen Z, Yuan L, et al. Direct chemical-vapor-deposition-fabricated, large-scale graphene glass with high carrier mobility and uniformity for touch panel applications. ACS Nano 2016;10:11136-44.

16. Cui L, Chen X, Liu B, et al. Highly conductive nitrogen-doped graphene grown on glass toward electrochromic applications. ACS Appl Mater Interfaces 2018;10:32622-30.

17. Yang W, Chen G, Shi Z, et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat Mater 2013;12:792-7.

18. Gao M, Pan Y, Huang L, et al. Epitaxial growth and structural property of graphene on Pt(111). Appl Phys Lett 2011;98:033101.

19. Xu X, Zhang Z, Dong J, et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci Bull 2017;62:1074-80.

20. Lee S, Toney MF, Ko W, et al. Laser-synthesized epitaxial graphene. ACS Nano 2010;4:7524-30.

21. Pei S, Cheng H. The reduction of graphene oxide. Carbon 2012;50:3210-28.

22. Dimiev AM, Tour JM. Mechanism of graphene oxide formation. ACS Nano 2014;8:3060-8.

23. Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 2008;3:563-8.

24. Deng B, Liu Z, Peng H. Toward mass production of CVD graphene films. Adv Mater 2019;31:e1800996.

25. Paredes JI, Villar-Rodil S, Martínez-Alonso A, Tascón JM. Graphene oxide dispersions in organic solvents. Langmuir 2008;24:10560-4.

26. Han DD, Zhang YL, Ma JN, Liu YQ, Han B, Sun HB. Light-mediated manufacture and manipulation of actuators. Adv Mater 2016;28:8328-43.

27. Hummers WS Jr, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc 1958;80:1339.

28. Yu W, Sisi L, Haiyan Y, Jie L. Progress in the functional modification of graphene/graphene oxide: a review. RSC Adv 2020;10:15328-45.

29. Lin J, Peng Z, Liu Y, et al. Laser-induced porous graphene films from commercial polymers. Nat Commun 2014;5:5714.

30. Singh SP, Li Y, Zhang J, Tour JM, Arnusch CJ. Sulfur-doped laser-induced porous graphene derived from polysulfone-class polymers and membranes. ACS Nano 2018;12:289-97.

31. Wan Z, Umer M, Lobino M, et al. Laser induced self-N-doped porous graphene as an electrochemical biosensor for femtomolar miRNA detection. Carbon 2020;163:385-94.

32. Ye R, James DK, Tour JM. Laser-induced graphene. ACC Chem Res 2018;51:1609-20.

33. Huang L, Su J, Song Y, Ye R. Laser-induced graphene: en route to smart sensing. Nano-Micro Lett 2020;12:157.

34. Ye X, Long J, Lin Z, Zhang H, Zhu H, Zhong M. Direct laser fabrication of large-area and patterned graphene at room temperature. Carbon 2014;68:784-90.

35. Lamberti A, Clerici F, Fontana M, Scaltrito L. A highly stretchable supercapacitor using laser-induced graphene electrodes onto elastomeric substrate. Adv Energy Mater 2016;6:1600050.

36. Sha Y, Yang W, Li S, et al. Laser induced graphitization of PAN-based carbon fibers. RSC Adv 2018;8:11543-50.

37. Lamberti A, Perrucci F, Caprioli M, et al. New insights on laser-induced graphene electrodes for flexible supercapacitors: tunable morphology and physical properties. Nanotechnology 2017;28:174002.

38. Liu J, Liu H, Lin N, et al. Facile fabrication of super-hydrophilic porous graphene with ultra-fast spreading feature and capillary effect by direct laser writing. Mater Chem Phys 2020;251:123083.

39. Nasser J, Groo L, Zhang L, Sodano H. Laser induced graphene fibers for multifunctional aramid fiber reinforced composite. Carbon 2020;158:146-56.

40. Jeong SY, Ma YW, Lee JU, Je GJ, Shin BS. Flexible and highly sensitive strain sensor based on laser-induced graphene pattern fabricated by 355 nm pulsed laser. Sensors 2019;19:4867.

41. Carvalho AF, Fernandes AJS, Leitão C, et al. Laser-induced graphene strain sensors produced by ultraviolet irradiation of polyimide. Adv Funct Mater 2018;28:1805271.

42. Stanford MG, Zhang C, Fowlkes JD, et al. High-resolution laser-induced graphene. flexible electronics beyond the visible limit. ACS Appl Mater Interfaces 2020;12:10902-7.

43. Zhang C, Peng Z, Huang C, et al. High-energy all-in-one stretchable micro-supercapacitor arrays based on 3D laser-induced graphene foams decorated with mesoporous ZnP nanosheets for self-powered stretchable systems. Nano Energy 2021;81:105609.

44. Abdulhafez M, Tomaraei GN, Bedewy M. Fluence-dependent morphological transitions in laser-induced graphene electrodes on polyimide substrates for flexible devices. ACS Appl Nano Mater 2021;4:2973-86.

45. Huang Y, Zeng L, Liu C, et al. Laser direct writing of heteroatom (N and S)-doped graphene from a polybenzimidazole ink donor on polyethylene terephthalate polymer and glass substrates. Small 2018;14:e1803143.

46. Wang H, Zhao Z, Liu P, Guo X. A soft and stretchable electronics using laser-induced graphene on polyimide/PDMS composite substrate. NPJ Flex Electron 2022:6.

47. Huang L, Wang H, Zhan D, Fang F. Flexible capacitive pressure sensor based on laser-induced graphene and polydimethylsiloxane foam. IEEE Sensors J 2021;21:12048-56.

48. Joanni E, Kumar R, Fernandes WP, Savu R, Matsuda A. In situ growth of laser-induced graphene micro-patterns on arbitrary substrates. Nanoscale 2022;14:8914-8.

49. Kulyk B, Silva BFR, Carvalho AF, et al. Laser-induced graphene from paper by ultraviolet irradiation: humidity and temperature sensors. Adv Mater Technol 2022;7:2101311.

50. He M, Wang G, Zhu Y, Wang Y, Liu F, Luo S. In-situ joule heating-triggered nanopores generation in laser-induced graphene papers for capacitive enhancement. Carbon 2022;186:215-26.

51. Wang D, Li J, Wang Y, et al. Laser-induced graphene papers with tunable microstructures as antibacterial agents. ACS Appl Nano Mater 2022.

52. Ye R, James DK, Tour JM. Laser-induced graphene: from discovery to translation. Adv Mater 2019;31:e1803621.

53. Wang H, Zhao Z, Liu P, Guo X. Laser-Induced graphene based flexible electronic devices. Biosensors 2022;12:55.

54. You R, Liu YQ, Hao YL, et al. Laser fabrication of graphene-based flexible electronics. Adv Mater 2020;32:1901981.

55. Smirnov VA, Arbuzov AA, Shul’ga YM, et al. Photoreduction of graphite oxide. High Energy Chem 2011;45:57-61.

56. Moon HK, Lee SH, Choi HC. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano 2009;3:3707-13.

57. Qian D, Wagner GJ, Liu WK, Yu M, Ruoff RS. Mechanics of carbon nanotubes. Appl Mech Rev 2002;55:495-533.

58. Ehsani H, Boyd JD, Wang J, Grady ME. Evolution of the laser-induced spallation technique in film adhesion measurement. Appl Mech Rev 2021;73:030802.

59. Mukherjee R, Thomas AV, Krishnamurthy A, Koratkar N. Photothermally reduced graphene as high-power anodes for lithium-ion batteries. ACS Nano 2012;6:7867-78.

60. Li G. Direct laser writing of graphene electrodes. J Appl Phys 2020;127:010901.

61. Treyz GV, Scarmozzino R, Osgood RM. Deep ultraviolet laser etching of vias in polyimide films. Appl Phys Lett 1989;55:346-8.

62. Ruan X, Wang R, Luo J, Yao Y, Liu T. Experimental and modeling study of CO2 laser writing induced polyimide carbonization process. Mater Des 2018;160:1168-77.

63. Bian J, Chen F, Ling H, et al. Experimental and modeling study of controllable laser lift-off via low-fluence multiscanning of polyimide-substrate interface. Int J Heat Mass Transfer 2022;188:122609.

64. Li G, Mo X, Law WC, Chan KC. Wearable fluid capture devices for electrochemical sensing of sweat. ACS Appl Mater Interfaces 2019;11:238-43.

65. Kim Y, Noh Y, Park S, Kim B, June Kim H. Ablation of polyimide thin-film on carrier glass using 355 nm and 37 ns laser pulses. Int J Heat Mass Transfer 2020;147:118896.

66. Babu SV, D’couto GC, Egitto FD. Excimer laser induced ablation of polyetheretherketone, polyimide, and polytetrafluoroethylene. J Appl Phys 1992;72:692-8.

67. Feng Y, Liu Z, Yi X. Co-occurrence of photochemical and thermal effects during laser polymer ablation via a 248-nm excimer laser. Appl Surf Sci 2000;156:177-82.

68. Smith GP, Crosley DR. A photochemical model of ozone interference effects in laser detection of tropospheric OH. J Geophys Res 1990;95:16427.

69. Sutcliffe E, Srinivasan R. Dynamics of UV laser ablation of organic polymer surfaces. J Appl Phys 1986;60:3315-22.

70. Dyer PE, Sidhu J. Excimer laser ablation and thermal coupling efficiency to polymer films. J Appl Phys 1985;57:1420-2.

71. Gorodetsky G, Kazyaka TG, Melcher RL, Srinivasan R. Calorimetric and acoustic study of ultraviolet laser ablation of polymers. Appl Phys Lett 1985;46:828-30.

72. Dong Y, Rismiller SC, Lin J. Molecular dynamic simulation of layered graphene clusters formation from polyimides under extreme conditions. Carbon 2016;104:47-55.

73. Vashisth A, Kowalik M, Gerringer JC, Ashraf C, van Duin ACT, Green MJ. ReaxFF simulations of laser-induced graphene (LIG) formation for multifunctional polymer nanocomposites. ACS Appl Nano Mater 2020;3:1881-90.

74. Singleton DL, Paraskevopoulos G, Irwin RS. XeCl laser ablation of polyimide: Influence of ambient atmosphere on particulate and gaseous products. J Appl Phys 1989;66:3324-8.

75. Srinivasan R, Hall R, Wilson W, Loehle W, Allbee D. Ultraviolet laser irradiation of the polyimide, PMDA-ODA (Kapton™), to yield a patternable, porous, electrically conducting carbon network. Synth Met 1994;66:301-7.

76. Raimondi F, Abolhassani S, Brütsch R, et al. Quantification of polyimide carbonization after laser ablation. J Appl Phys 2000;88:3659-66.

77. Srinivasan R, Hall RR, Loehle WD, Wilson WD, Allbee DC. Chemical transformations of the polyimide Kapton brought about by ultraviolet laser radiation. J Appl Phys 1995;78:4881-7.

78. Qin Z, He T, Zhang Y. Characteristics of the conductive polyimide film surfaces induced by ultraviolet laser beam. Appl Phys A 1998;66:441-3.

79. Duy LX, Peng Z, Li Y, Zhang J, Ji Y, Tour JM. Laser-induced graphene fibers. Carbon 2018;126:472-9.

80. Wang Z, Wang G, Liu W, Hu B, Liu J, Zhang Y. Patterned laser-induced graphene for terahertz wave modulation. J Opt Soc Am B 2020;37:546.

81. Lu Z, Wu L, Dai X, et al. Novel flexible bifunctional amperometric biosensor based on laser engraved porous graphene array electrodes: highly sensitive electrochemical determination of hydrogen peroxide and glucose. J Hazard Mater 2021;402:123774.

82. Wang Z, Chen B, Sun S, Pan L, Gao Y. Maskless formation of conductive carbon layer on leather for highly sensitive flexible strain sensors. Adv Electron Mater 2020;6:2000549.

83. Chen Y, Long J, Zhou S, et al. UV Laser-induced polyimide-to-graphene conversion: modeling, fabrication, and application. Small Methods 2019;3:1900208.

84. Wang L, Wang Z, Bakhtiyari AN, Zheng H. A comparative study of laser-induced graphene by CO2 infrared laser and 355 nm ultraviolet (UV) laser. Micromachines 2020;11:1094.

85. Luo S, Hoang PT, Liu T. Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays. Carbon 2016;96:522-31.

86. Cai J, Lv C, Watanabe A. Laser direct writing of high-performance flexible all-solid-state carbon micro-supercapacitors for an on-chip self-powered photodetection system. Nano Energy 2016;30:790-800.

87. Li G, Law W, Chan KC. Floating, highly efficient, and scalable graphene membranes for seawater desalination using solar energy. Green Chem 2018;20:3689-95.

88. Lu X, Wu G, Xiong Q, et al. Laser in-situ synthesis of SnO2/N-doped graphene nanocomposite with enhanced lithium storage properties based on both alloying and insertion reactions. Appl Surf Sci 2017;422:645-53.

89. Gao Y, Li Q, Wu R, Sha J, Lu Y, Xuan F. Laser direct writing of ultrahigh sensitive SiC-based strain sensor arrays on elastomer toward electronic skins. Adv Funct Mater 2019;29:1806786.

90. Settu K, Chiu PT, Huang YM. Laser-induced graphene-based enzymatic biosensor for glucose detection. Polymers 2021;13:2795.

91. Zhang C, Ping J, Ying Y. Evaluation of trans-resveratrol level in grape wine using laser-induced porous graphene-based electrochemical sensor. Sci Total Environ 2020;714:136687.

92. Vanegas DC, Patiño L, Mendez C, et al. Laser scribed graphene biosensor for detection of biogenic amines in food samples using locally sourced materials. Biosensors 2018;8:42.

93. Garland NT, McLamore ES, Cavallaro ND, et al. Flexible laser-induced graphene for nitrogen sensing in soil. ACS Appl Mater Interfaces 2018;10:39124-33.

94. Le TD, Park S, An J, Lee PS, Kim Y. Ultrafast laser pulses enable one-step graphene patterning on woods and leaves for green electronics. Adv Funct Mater 2019;29:1902771.

95. Kalita G, Qi L, Namba Y, Wakita K, Umeno M. Femtosecond laser induced micropatterning of graphene film. Mater Lett 2011;65:1569-72.

96. Yu H, Bian J, Chen F, Ji J, Huang Y. Ultrathin, graphene-in-polyimide strain sensor via laser-induced interfacial ablation of polyimide. Adv Electron Mater 2022:2201086.

97. Lippert T, Ortelli E, Panitz JC, et al. Imaging-XPS/Raman investigation on the carbonization of polyimide after irradiation at 308 nm. Appl Phys A 1999;69:S651-S654.

98. Le TH, Yang Y, Yu L, Gao T, Huang Z, Kang F. Polyimide-based porous hollow carbon nanofibers for supercapacitor electrode. J Appl Polym Sci 2016:133.

99. Yang W, Zhao W, Li Q, et al. Fabrication of smart components by 3D printing and laser-scribing technologies. ACS Appl Mater Interfaces 2020;12:3928-35.

100. Wang W, Liu Y, Liu Y, et al. Direct laser writing of superhydrophobic PDMS elastomers for controllable manipulation via marangoni effect. Adv Funct Mater 2017;27:1702946.

101. Zhang Z, Song M, Hao J, Wu K, Li C, Hu C. Visible light laser-induced graphene from phenolic resin: a new approach for directly writing graphene-based electrochemical devices on various substrates. Carbon 2018;127:287-96.

102. Yang L, Ji H, Meng C, et al. Intrinsically breathable and flexible NO2 gas sensors produced by laser direct writing of self-assembled block copolymers. ACS Appl Mater Interfaces 2022;14:17818-25.

103. Yang L, Yan J, Meng C, et al. Vanadium oxide-doped laser-induced graphene multi-parameter sensor to decouple soil nitrogen loss and temperature. Res Square 2022:2210322.

104. Beckham JL, Li JT, Stanford MG, et al. High-resolution laser-induced graphene from photoresist. ACS Nano 2021;15:8976-83.

105. Ye R, Han X, Kosynkin DV, et al. Laser-induced conversion of teflon into fluorinated nanodiamonds or fluorinated graphene. ACS Nano 2018;12:1083-8.

106. Sharma CP, Arnusch CJ. Laser-induced graphene composite adhesive tape with electro-photo-thermal heating and antimicrobial capabilities. Carbon 2022;196:102-9.

107. Long CT, Oh JH, Martinez AD, et al. Polymer infiltration and pyrolysis cycling for creating dense, conductive laser-induced graphene. Carbon 2022;200:264-70.

108. Ye R, Chyan Y, Zhang J, et al. Laser-induced graphene formation on wood. Adv Mater 2017;29:1702211.

109. Dreimol CH, Guo H, Ritter M, et al. Sustainable wood electronics by iron-catalyzed laser-induced graphitization for large-scale applications. Nat Commun 2022;13:3680.

110. Chyan Y, Ye R, Li Y, Singh SP, Arnusch CJ, Tour JM. Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS Nano 2018;12:2176-83.

111. Wang S, Yu Y, Luo S, et al. All-solid-state supercapacitors from natural lignin-based composite film by laser direct writing. Appl Phys Lett 2019;115:083904.

112. Liu M, Wu J, Cheng H. Effects of laser processing parameters on properties of laser-induced graphene by irradiating CO2 laser on polyimide. Sci China Technol Sci 2022;65:41-52.

113. Li Y, Luong DX, Zhang J, et al. Laser-induced graphene in controlled atmospheres: from superhydrophilic to superhydrophobic surfaces. Adv Mater 2017;29:1700496.

114. Xu B, Ding Y. Hydrophilic/Hydrophobic SiO2 nanoparticles enabled janus-type paper through commercial glaco spraying and air-plasma treatment. Adv Mater Interfaces 2022;9:2200934.

115. Bodas D, Khan-malek C. Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments. Microelectron Eng 2006;83:1277-9.

116. Chen Y, Xie B, Long J, et al. Interfacial laser-induced graphene enabling high-performance liquid-solid triboelectric nanogenerator. Adv Mater 2021;33:e2104290.

117. Han X, Ye R, Chyan Y, et al. Laser-induced graphene from wood impregnated with metal salts and use in electrocatalysis. ACS Appl Nano Mater 2018;1:5053-61.

118. Deng H, Zhang C, Xie Y, et al. Laser induced MoS2/carbon hybrids for hydrogen evolution reaction catalysts. J Mater Chem A 2016;4:6824-30.

119. Peng Z, Jia J, Ding H, et al. High-energy all-in-one micro-supercapacitors based on ZnO mesoporous nanosheet-decorated laser-induced porous graphene foams. J Mater Res 2021;36:1927-36.

120. Yi T, Mei J, Guan B, et al. Construction of spherical NiO@MnO2 with core-shell structure obtained by depositing MnO2 nanoparticles on NiO nanosheets for high-performance supercapacitor. Ceram Int 2020;46:421-9.

121. Amiri MH, Namdar N, Mashayekhi A, Ghasemi F, Sanaee Z, Mohajerzadeh S. Flexible micro supercapacitors based on laser-scribed graphene/ZnO nanocomposite. J Nanopart Res 2016:18.

122. Zhu J, Liu S, Hu Z, et al. Laser-induced graphene non-enzymatic glucose sensors for on-body measurements. Biosens Bioelectron 2021;193:113606.

123. Rahimi R, Ochoa M, Ziaie B. Direct Laser Writing of porous-carbon/silver nanocomposite for flexible electronics. ACS Appl Mater Interfaces 2016;8:16907-13.

124. Hermerschmidt F, Burmeister D, Ligorio G, et al. Truly low temperature sintering of printed copper ink using formic acid. Adv Mater Technol 2018;3:1800146.

125. Chang H, Guo R, Sun Z, et al. Direct writing and repairable paper flexible electronics using nickel-liquid metal ink. Adv Mater Interfaces 2018;5:1800571.

126. Eshkalak S, Chinnappan A, Jayathilaka W, Khatibzadeh M, Kowsari E, Ramakrishna S. A review on inkjet printing of CNT composites for smart applications. Appl Mater Today 2017;9:372-86.

127. Peng Y, Zhao W, Ni F, Yu W, Liu X. Forest-like laser-induced graphene film with ultrahigh solar energy utilization efficiency. ACS Nano 2021;15:19490-502.

128. Zhao P, Bhattacharya G, Fishlock SJ, et al. Replacing the metal electrodes in triboelectric nanogenerators: high-performance laser-induced graphene electrodes. Nano Energy 2020;75:104958.

129. Xu Y, Fei Q, Page M, et al. Laser-induced graphene for bioelectronics and soft actuators. Nano Res 2021;14:3033-50.

130. Ling Y, Pang W, Li X, et al. Laser-induced graphene for electrothermally controlled, mechanically guided, 3D assembly and human-soft actuators interaction. Adv Mater 2020;32:e1908475.

131. Wang W, Han B, Zhang Y, et al. Laser-induced graphene tapes as origami and stick-on labels for photothermal manipulation via marangoni effect. Adv Funct Mater 2021;31:2006179.

132. Rahimi R, Ochoa M, Yu W, Ziaie B. Highly stretchable and sensitive unidirectional strain sensor via laser carbonization. ACS Appl Mater Interfaces 2015;7:4463-70.

133. Chen X, Luo F, Yuan M, et al. A dual-functional graphene-based self-alarm health-monitoring e-skin. Adv Funct Mater 2019;29:1904706.

134. Sun B, McCay RN, Goswami S, et al. Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges. Adv Mater 2018;30:e1804327.

135. Chen X, Li R, Niu G, et al. Porous graphene foam composite-based dual-mode sensors for underwater temperature and subtle motion detection. Chem Eng J 2022;444:136631.

136. Zhu J, Cho M, Li Y, et al. Biomimetic turbinate-like artificial nose for hydrogen detection based on 3D porous laser-induced graphene. ACS Appl Mater Interfaces 2019;11:24386-94.

137. Cheng L, Guo W, Cao X, et al. Laser-induced graphene for environmental applications: progress and opportunities. Mater Chem Front 2021;5:4874-91.

138. Yang L, Yi N, Zhu J, et al. Novel gas sensing platform based on a stretchable laser-induced graphene pattern with self-heating capabilities. J Mater Chem A 2020;8:6487-500.

139. Stanford MG, Yang K, Chyan Y, Kittrell C, Tour JM. Laser-Induced graphene for flexible and embeddable gas sensors. ACS Nano 2019;13:3474-82.

140. Dosi M, Lau I, Zhuang Y, Simakov DSA, Fowler MW, Pope MA. Ultrasensitive electrochemical methane sensors based on solid polymer electrolyte-infused laser-induced graphene. ACS Appl Mater Interfaces 2019;11:6166-73.

141. Kaidarova A, Alsharif N, Oliveira BNM, et al. Laser-printed, flexible graphene pressure sensors. Global Challenges 2020;4:2000001.

142. Zhu C, Guo D, Ye D, Jiang S, Huang Y. Flexible PZT-integrated, bilateral sensors via transfer-free laser lift-off for multimodal measurements. ACS Appl Mater Interfaces 2020;12:37354-62.

143. Ju K, Gao Y, Xiao T, Yu C, Tan J, Xuan F. Laser direct writing of carbonaceous sensors on cardboard for human health and indoor environment monitoring. RSC Adv 2020;10:18694-703.

144. Yang L, Wang H, Yuan W, et al. Wearable pressure sensors based on MXene/tissue papers for wireless human health monitoring. ACS Appl Mater Interfaces 2021;13:60531-43.

145. Wang X, Gu Y, Xiong Z, Cui Z, Zhang T. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv Mater 2014;26:1336-42.

146. Gong S, Schwalb W, Wang Y, et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun 2014;5:1-8.

147. Wang Q, Jian M, Wang C, Zhang Y. Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv Funct Mater 2017;27:1605657.

148. Chun S, Jung H, Choi Y, Bae G, Kil JP, Park W. A tactile sensor using a graphene film formed by the reduced graphene oxide flakes and its detection of surface morphology. Carbon 2015;94:982-7.

149. Duan S, Wang B, Lin Y, et al. Waterproof mechanically robust multifunctional conformal sensors for underwater interactive human-machine interfaces. Adv Intell Syst 2021;3:2100056.

150. Tao LQ, Tian H, Liu Y, et al. An intelligent artificial throat with sound-sensing ability based on laser induced graphene. Nat Commun 2017;8:14579.

151. Zhang S, Zhu J, Zhang Y, et al. Standalone stretchable RF systems based on asymmetric 3D microstrip antennas with on-body wireless communication and energy harvesting. Nano Energy 2022;96:107069.

152. Zhu J, Zhang S, Yi N, et al. Strain-insensitive hierarchically structured stretchable microstrip antennas for robust wireless communication. Nanomicro Lett 2021;13:108.

153. Zhu J, Hu Z, Song C, et al. Stretchable wideband dipole antennas and rectennas for RF energy harvesting. Mater Today Phys 2021;18:100377.

154. Zhu J, Hu Z, Zhang S, et al. Stretchable 3D wideband dipole antennas from mechanical assembly for on-body communication. ACS Appl Mater Interfaces 2022;14:12855-62.

155. Zang X, Xing D, Tang W, et al. Electromagnetic interference shielding with laser induced molybdenum carbide-graphene paper. Mater Lett 2020;271:127784.

156. Yin J, Zhang J, Zhang S, et al. Flexible 3D porous graphene film decorated with nickel nanoparticles for absorption-dominated electromagnetic interference shielding. Chem Eng J 2021;421:129763.

157. Xu J, Li R, Ji S, et al. Multifunctional graphene microstructures inspired by honeycomb for ultrahigh performance electromagnetic interference shielding and wearable applications. ACS Nano 2021;15:8907-18.

158. Yu W, Peng Y, Cao L, Zhao W, Liu X. Free-standing laser-induced graphene films for high-performance electromagnetic interference shielding. Carbon 2021;183:600-11.

159. Tonouchi M. Cutting-edge terahertz technology. Nat Photon 2007;1:97-105.

160. Zhang XC, Shkurinov A, Zhang Y. Extreme terahertz science. Nat Photon 2017;11:16-8.

161. Jiang J, Guan Q, Liu Y, Sun X, Wen Z. Abrasion and fracture self-healable triboelectric nanogenerator with ultrahigh stretchability and long-term durability. Adv Funct Mater 2021;31:2105380.

162. Zhu S, Yu G, Tang W, Hu J, Luo E. Thermoacoustically driven liquid-metal-based triboelectric nanogenerator: a thermal power generator without solid moving parts. Appl Phys Lett 2021;118:113902.

163. Stanford MG, Li JT, Chyan Y, Wang Z, Wang W, Tour JM. Laser-induced graphene triboelectric nanogenerators. ACS Nano 2019;13:7166-74.

164. Jiang C, Li X, Yao Y, et al. A multifunctional and highly flexible triboelectric nanogenerator based on MXene-enabled porous film integrated with laser-induced graphene electrode. Nano Energy 2019;66:104121.

165. Yang L, Liu C, Yuan W, et al. Fully stretchable, porous MXene-graphene foam nanocomposites for energy harvesting and self-powered sensing. Nano Energy 2022;103:107807.

166. Huang L, Xu S, Wang Z, et al. Self-reporting and photothermally enhanced rapid bacterial killing on a laser-induced graphene mask. ACS Nano 2020;14:12045-53.

167. Zhang C, Chen H, Ding X, et al. Human motion-driven self-powered stretchable sensing platform based on laser-induced graphene foams. Appl Phys Rev 2022;9:011413.

168. Shi X, Zhou F, Peng J, Wu R, Wu Z, Bao X. One-step scalable fabrication of graphene-integrated micro-supercapacitors with remarkable flexibility and exceptional performance uniformity. Adv Funct Mater 2019;29:1902860.

169. Peng Z, Lin J, Ye R, Samuel EL, Tour JM. Flexible and stackable laser-induced graphene supercapacitors. ACS Appl Mater Interfaces 2015;7:3414-9.

170. Li G, Mo X, Law W, Chan KC. 3D printed graphene/nickel electrodes for high areal capacitance electrochemical storage. J Mater Chem A 2019;7:4055-62.

171. Li L, Zhang J, Peng Z, et al. High-performance pseudocapacitive microsupercapacitors from laser-induced graphene. Adv Mater 2016;28:838-45.

172. Song W, Zhu J, Gan B, et al. Flexible, stretchable, and transparent planar microsupercapacitors based on 3D porous laser-induced graphene. Small 2018;14:1702249.

173. Tehrani F, Beltrán-gastélum M, Sheth K, et al. Laser-induced graphene composites for printed, stretchable, and wearable electronics. Adv Mater Technol 2019;4:1900162.

174. Alhajji E, Zhang F, Alshareef HN. Status and prospects of laser-induced graphene for battery applications. Energy Technol 2021;9:2100454.

175. Gao X, Jia Y, Zhang W, Yuan C, Xu J. Mechanics-driven anode material failure in battery safety and capacity deterioration issues: a review. Appl Mech Rev 2022;74:060801.

176. Ren M, Zhang J, Tour JM. Laser-induced graphene hybrid catalysts for rechargeable Zn-air batteries. ACS Appl Energy Mater 2019;2:1460-8.

177. Ye R, Peng Z, Wang T, et al. In situ formation of metal oxide nanocrystals embedded in laser-induced graphene. ACS Nano 2015;9:9244-51.

178. Zhang J, Ren M, Li Y, Tour JM. In situ synthesis of efficient water oxidation catalysts in laser-induced graphene. ACS Energy Lett 2018;3:677-83.

179. Aslam S, Sagar RUR, Liu Y, et al. Graphene decorated polymeric flexible materials for lightweight high areal energy lithium-ion batteries. Appl Mater Today 2019;17:123-9.

180. Yi J, Chen J, Yang Z, et al. Facile Patterning of laser-induced graphene with tailored li nucleation kinetics for stable lithium-metal batteries. Adv Energy Mater 2019;9:1901796.

181. Duan W, Chen G, Chen C, et al. Electrochemical removal of hexavalent chromium using electrically conducting carbon nanotube/polymer composite ultrafiltration membranes. J Membr Sci 2017;531:160-71.

182. Sha J, Li Y, Villegas Salvatierra R, et al. Three-dimensional printed graphene foams. ACS Nano 2017;11:6860-7.

183. Luong DX, Subramanian AK, Silva GAL, et al. Laminated object manufacturing of 3D-printed laser-induced graphene foams. Adv Mater 2018;30:e1707416.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/