REFERENCES
1. Huang J, Li D, Zhao M, et al. Flexible electrically conductive biomass-based aerogels for piezoresistive pressure/strain sensors. Chem Eng J 2019;373:1357-66.
2. Liu YF, Liu Q, Long JF, et al. Bioinspired color-changeable organogel tactile sensor with excellent overall performance. ACS Appl Mater Inter 2020;12:49866-75.
3. Liu Z, Liang G, Zhan Y, et al. A soft yet device-level dynamically super-tough supercapacitor enabled by an energy-dissipative dual-crosslinked hydrogel electrolyte. Nano Energy 2019;58:732-42.
4. Chen ZH, Fang R, Li W, Guan J. Stretchable transparent conductors: from micro/macromechanics to applications. Adv Mater 2019;31:e1900756.
5. Wang P, Li G, Liu J, et al. Tailorable capacitive tactile sensor based on stretchable and dissolvable porous silver nanowire/polyvinyl alcohol nanocomposite hydrogel for wearable human motion detection. Adv Mater Inter 2021;8:2100998.
6. Liao X, Yan X, Lin P, Lu S, Tian Y, Zhang Y. Enhanced performance of ZnO piezotronic pressure sensor through electron-tunneling modulation of MgO nanolayer. ACS Appl Mater Inter 2015;7:1602-7.
7. Liao X, Song W, Zhang X, et al. Hetero-contact microstructure to program discerning tactile interactions for virtual reality. Nano Energy 2019;60:127-36.
8. Doshi SM, Thostenson ET. Thin and flexible carbon nanotube-based pressure sensors with ultrawide sensing range. ACS Sens 2018;3:1276-82.
9. Tang X, Yang W, Yin S, et al. Controllable graphene wrinkle for a high-performance flexible pressure sensor. ACS Appl Mater Inter 2021;13:20448-58.
10. Sun G, Wang P, Jiang Y, Sun H, Meng C. Intrinsically flexible and breathable supercapacitive pressure sensor based on MXene and ionic gel decorating textiles for comfortable and ultrasensitive wearable healthcare monitoring. ACS Appl Electron Mater 2022;4:1958-67.
11. Zang X, Jiang Y, Wang X, Wang X, Ji J, Xue M. Highly sensitive pressure sensors based on conducting polymer-coated paper. Sensors Actuat B Chem 2018;273:1195-201.
12. Liu J, Liu Z, Li M, et al. Polydimethylsiloxane nanocomposite filled with 3D carbon nanosheet frameworks for tensile and compressive strain sensors. Compos Part B Eng 2019;168:175-82.
13. Han CJ, Park B, Suk Oh M, Jung S, Kim J. Photo-induced fabrication of Ag nanowire circuitry for invisible, ultrathin, conformable pressure sensors. J Mater Chem C 2017;5:9986-94.
14. Kim SJ, Mondal S, Min BK, Choi CG. Highly sensitive and flexible strain-pressure sensors with cracked paddy-shaped MoS2/graphene foam/ecoflex hybrid nanostructures. ACS Appl Mater Inter 2018;10:36377-84.
15. Chen B, Zhang L, Li H, Lai X, Zeng X. Skin-inspired flexible and high-performance MXene@polydimethylsiloxane piezoresistive pressure sensor for human motion detection. J Colloid Inter Sci 2022;617:478-88.
16. Zhu M, Yu H, Tang F, Li Y, Liu Y, Yao J. Robust natural biomaterial based flexible artificial skin sensor with high transparency and multiple signals capture. Chem Eng J 2020;394:124855.
17. Keplinger C, Sun JY, Foo CC, Rothemund P, Whitesides GM, Suo Z. Stretchable, transparent, ionic conductors. Science 2013;341:984-7.
18. Hwang BU, Lee JH, Trung TQ, et al. Transparent stretchable self-powered patchable sensor platform with ultrasensitive recognition of human activities. ACS Nano 2015;9:8801-10.
19. Ahmed K, Shiblee MNI, Khosla A, Nagahara L, Thundat T, Furukawa H. Review-recent progresses in 4D printing of gel materials. J Electrochem Soc 2020;167:037563.
20. Keshavarz L, Ghaani MR, Macelroy JD, English NJ. A comprehensive review on the application of aerogels in CO2-adsorption: Materials and characterisation. Chem Eng J 2021;412:128604.
21. Zhang J, Zhang Y, Li Y, Wang P. Textile-based flexible pressure sensors: a review. Polym Rev 2022;62:65-94.
22. Xu F, Li X, Shi Y, et al. Recent developments for flexible pressure sensors: a review. Micromachines 2018;9:580.
23. Chen W, Yan X. Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: A review. J Mater Sci Technol 2020;43:175-88.
24. Ahmed EM. Hydrogel: Preparation, characterization, and applications: a review. J Adv Res 2015;6:105-21.
25. Zhang L, Jiang D, Dong T, et al. Overview of Ionogels in flexible electronics. Chem Rec 2020;20:948-67.
26. Wang L, Wang Z, Li Y, et al. An ionically conductive, self-powered and stable organogel for pressure sensing. Nanomaterials 2022;12:714.
27. Ma M, Zhang Z, Liao Q, et al. Self-powered artificial electronic skin for high-resolution pressure sensing. Nano Energy 2017;32:389-96.
28. Liao X, Wang W, Zhong L, Lai X, Zheng Y. Synergistic sensing of stratified structures enhancing touch recognition for multifunctional interactive electronics. Nano Energy 2019;62:410-8.
29. Liao X, Wang W, Lin M, Li M, Wu H, Zheng Y. Hierarchically distributed microstructure design of haptic sensors for personalized fingertip mechanosensational manipulation. Mater Horiz 2018;5:920-31.
30. Lv Q, Wu M, Shen Y. Enhanced swelling ratio and water retention capacity for novel super-absorbent hydrogel. Colloid Surface A 2019;583:123972.
31. Zeng J, Dong L, Sha W, Wei L, Guo X. Highly stretchable, compressible and arbitrarily deformable all-hydrogel soft supercapacitors. Chem Eng J 2020;383:123098.
32. Wang Q, Lan J, Hua Z, et al. An oriented Fe3+-regulated lignin-based hydrogel with desired softness, conductivity, stretchability, and asymmetric adhesiveness towards anti-interference pressure sensors. Int J Biol Macromol 2021;184:282-8.
33. Gao Y, Guo J, Chen J, et al. Highly conductive organic-ionogels with excellent hydrophobicity and flame resistance. Chem Eng J 2022;427:131057.
34. Wang Y, Chen Y, Gao J, et al. Highly conductive and thermally stable ion gels with tunable anisotropy and modulus. Adv Mater 2016;28:2571-8.
35. Gao Y, Shi L, Lu S, et al. Highly stretchable organogel ionic conductors with extreme-temperature tolerance. Chem Mater 2019;31:3257-64.
36. Li Y, Liu X, Nie X, et al. Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv Funct Mater 2019;29:1807624.
37. Zhang S, Tu T, Li T, et al. 3D MXene/PEDOT:PSS composite aerogel with a controllable patterning property for highly sensitive wearable physical monitoring and robotic tactile sensing. ACS Appl Mater Inter ;2022:23877-87.
38. Garemark J, Perea-Buceta JE, Rico Del Cerro D, et al. Nanostructurally controllable strong wood aerogel toward efficient thermal insulation. ACS Appl Mater Inter 2022;14:24697-707.
39. Wang Z, Cong Y, Fu J. Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. J Mater Chem B 2020;8:3437-59.
40. Sun H, He Y, Wang Z, Liang Q. An insight into skeletal networks analysis for smart hydrogels. Adv Funct Mater 2022;32:2108489.
41. Wang J, Wang J, Sheng Z, Du R, Yan L, Zhang X. Solid-liquid-vapor triphase gel. Langmuir 2021;37:13501-11.
42. Scaffaro R, Maio A, Citarrella MC. Ionic tactile sensors as promising biomaterials for artificial skin: Review of latest advances and future perspectives. Eur Polym J 2021;151:110421.
43. Kloxin CJ, Bowman CN. Covalent adaptable networks: smart, reconfigurable and responsive network systems. Chem Soc Rev 2013;42:7161-73.
44. Lin J, Zheng SY, Xiao R, et al. Constitutive behaviors of tough physical hydrogels with dynamic metal-coordinated bonds. J Mech Phys Solids 2020;139:103935.
45. Bashir S, Hina M, Iqbal J, et al. Fundamental Concepts of hydrogels: synthesis, properties, and their applications. Polymers 2020;12:2702.
46. Hao Z, Li H, Wang Y, et al. Supramolecular peptide nanofiber hydrogels for bone tissue engineering: from multihierarchical fabrications to comprehensive applications. Adv Sci 2022;9:e2103820.
47. Yokoyama E, Masada I, Shimamura K, Ikawa T, Monobe K. Morphology and structure of highly elastic poly(vinyl alcohol) hydrogel prepared by repeated freezing-and-melting. Colloid Polym Sci 1986;264:595-601.
48. Zhang K, Feng Q, Fang Z, Gu L, Bian L. Structurally dynamic hydrogels for biomedical applications: pursuing a fine balance between macroscopic stability and microscopic dynamics. Chem Rev 2021;121:11149-93.
49. Tan H, Chu CR, Payne KA, Marra KG. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 2009;30:2499-506.
50. Kimura A, Nagasawa N, Shimada A, Taguchi M. Crosslinking of polysaccharides in room temperature ionic liquids by ionizing radiation. Radiat Phys Chem 2016;124:130-4.
51. Lee CL, Daniel AR, Holbrook M, et al. Sensitization of Vascular endothelial cells to ionizing radiation promotes the development of delayed intestinal injury in mice. Radiat Res 2019;192:258-66.
52. Ono K, Saito Y, Yura H, et al. Photocrosslinkable chitosan as a biological adhesive. J Biomed Mater Res 2000;49:289-95.
53. Dinh Xuan H, Timothy B, Park HY, et al. Super stretchable and durable electroluminescent devices based on double-network ionogels. Adv Mater 2021;33:e2008849.
54. Wang P, Li G, Yu W, Meng C, Guo S. Color-customizable, stretchable, self-healable and degradable ionic gel for variable human-motion detection via strain, pressure, and torsion. Adv Mater Inter 2022;9:2102426.
55. Wang P, Li G, Liu J, Hou Z, Meng C, Guo S. Flexible, freestanding, ultrasensitive, and iontronic tactile sensing textile. ACS Appl Electron Mater 2021;3:2195-202.
56. Wang P, Li G, Yu W, Meng C, Guo S. Flexible pseudocapacitive iontronic tactile sensor based on microsphere-decorated electrode and microporous polymer electrolyte for ultrasensitive pressure detection. Adv Elect Mater 2022;8:2101269.
57. Hao S, Zhang J, Yang X, Li T, Song H. A novel strategy for fabricating highly stretchable and highly conductive photoluminescent ionogels via an in situ self-catalytic cross-linking reaction in ionic liquids. J Mater Chem C 2021;9:5789-99.
58. Zheng SY, Mao S, Yuan J, et al. Molecularly engineered zwitterionic hydrogels with high toughness and self-healing capacity for soft electronics applications. Chem Mater 2021;33:8418-29.
59. Winther-Jensen O, Vijayaraghavan R, Sun J, Winther-Jensen B, MacFarlane DR. Self polymerising ionic liquid gel. Chem Commun 2009:3041-3.
61. Mahmoudpour M, Dolatabadi JE, Hasanzadeh M, Soleymani J. Carbon-based aerogels for biomedical sensing: Advances toward designing the ideal sensor. Adv Colloid Inter Sci 2021;298:102550.
62. Han X, Liang J, Fukuda S, Zhu L, Wang S. Sodium alginate-silica composite aerogels from rice husk ash for efficient absorption of organic pollutants. Biomass Bioenergy 2022;159:106424.
63. Zhao C, Chen F, Dong S, Liu X, Qi H, Deng S. Silicon-containing polyarylacetylene aerogel with heat resistance and ablative property for high-temperature insulation. J Appl Polym Sci 2022:139.
64. Freytag A, Sánchez-Paradinas S, Naskar S, et al. Versatile aerogel fabrication by freezing and subsequent freeze-drying of colloidal nanoparticle solutions. Angew Chem Int Ed Engl 2016;55:1200-3.
66. Wan W, Zhang R, Ma M, Zhou Y. Monolithic aerogel photocatalysts: a review. J Mater Chem A 2018;6:754-75.
67. Nadargi DY, Latthe SS, Hirashima H, Rao AV. Studies on rheological properties of methyltriethoxysilane (MTES) based flexible superhydrophobic silica aerogels. Micropor Mesopor Mat 2009;117:617-26.
68. Shimizu T, Kanamori K, Maeno A, et al. Transparent, highly insulating polyethyl- and polyvinylsilsesquioxane aerogels: mechanical improvements by vulcanization for ambient pressure drying. Chem Mater 2016;28:6860-8.
69. Shimizu T, Kanamori K, Maeno A, Kaji H, Nakanishi K. Transparent ethylene-bridged polymethylsiloxane aerogels and XErogels with improved bending flexibility. Langmuir 2016;32:13427-34.
70. Parale VG, Lee K, Park H. Flexible and transparent silica aerogels: an overview. J Korean Ceram Soc 2017;54:184-99.
71. Jung SM, Jung HY, Fang W, Dresselhaus MS, Kong J. A facile methodology for the production of in situ inorganic nanowire hydrogels/aerogels. Nano Lett 2014;14:1810-7.
72. Cai Y, Shen J, Ge G, et al. Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 2018;12:56-62.
73. Guo Y, Zhang X, Wang Y, et al. All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring. Nano Energy 2018;48:152-60.
74. He Z, Chen W, Liang B, et al. Capacitive pressure sensor with high sensitivity and fast response to dynamic interaction based on graphene and porous nylon networks. ACS Appl Mater Inter 2018;10:12816-23.
75. Sun G, Wang P, Jiang Y, et al. Recent advances in flexible fiber-shaped tactile sensor. J Hebei Univ Technol 2011;51:97-115.
76. Duan L, D'hooge DR, Cardon L. Recent progress on flexible and stretchable piezoresistive strain sensors: From design to application. Prog Mater Sci 2020;114:100617.
77. Trung TQ, Lee NE. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv Mater 2016;28:4338-72.
78. Qiu L, He Z, Li D. Multifunctional cellular materials based on 2D nanomaterials: prospects and challenges. Adv Mater 2018;30:1704850.
79. Shi X, Fan X, Zhu Y, et al. Pushing detectability and sensitivity for subtle force to new limits with shrinkable nanochannel structured aerogel. Nat Commun 2022;13:1119.
80. Yao B, Ye Z, Lou X, et al. Wireless rehabilitation training sensor arrays made with hot screen-imprinted conductive hydrogels with a low percolation threshold. ACS Appl Mater Inter 2022;14:12734-47.
81. Liu Q, Liu Z, Li C, et al. Highly transparent and flexible iontronic pressure sensors based on an opaque to transparent transition. Adv Sci 2020;7:2000348.
82. Nie B, Xing S, Brandt JD, Pan T. Droplet-based interfacial capacitive sensing. Lab Chip 2012;12:1110-8.
83. Li R, Si Y, Zhu Z, et al. Supercapacitive iontronic nanofabric sensing. Adv Mater 2017;29:1700253.
85. Bai N, Wang L, Wang Q, et al. Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity. Nat Commun 2020;11:209.
86. Zhu P, Du H, Hou X, et al. Skin-electrode iontronic interface for mechanosensing. Nat Commun 2021;12:4731.
87. Lu C, Chen X. Piezoionic strain sensors enabled by force-voltage coupling from ionogels. Chem Phys Lett 2022;803:139872.
89. Gao Q, Cheng T, Wang ZL. Triboelectric mechanical sensors-progress and prospects. Extreme Mech Lett 2021;42:101100.
90. Claver U, Zhao G. Recent progress in flexible pressure sensors based electronic skin. Adv Eng Mater 2021;23:2001187.
91. Tao K, Chen Z, Yu J, et al. Ultra-sensitive, deformable, and transparent triboelectric tactile sensor based on micro-pyramid patterned ionic hydrogel for interactive human-machine interfaces. Adv Sci 2022;9:e2104168.
92. Li F, Tang J, Geng J, Luo D, Yang D. Polymeric DNA hydrogel: design, synthesis and applications. Prog Polym Sci 2019;98:101163.
93. Li J, Mo L, Lu CH, Fu T, Yang HH, Tan W. Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications. Chem Soc Rev 2016;45:1410-31.
94. Li J, Xing R, Bai S, Yan X. Recent advances of self-assembling peptide-based hydrogels for biomedical applications. Soft Matter 2019;15:1704-15.
95. Yan C, Pochan DJ. Rheological properties of peptide-based hydrogels for biomedical and other applications. Chem Soc Rev 2010;39:3528-40.
96. Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, Concheiro A. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv Drug Deliv Rev 2013;65:1148-71.
97. Peers S, Montembault A, Ladavière C. Chitosan hydrogels for sustained drug delivery. J Control Release 2020;326:150-63.
98. Zhu J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 2010;31:4639-56.
99. Kamoun EA, Kenawy ES, Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 2017;8:217-33.
100. Yang D, Hartman MR, Derrien TL, et al. DNA materials: bridging nanotechnology and biotechnology. Acc Chem Res 2014;47:1902-11.
101. Li F, Dong Y, Zhang Z, et al. A recyclable biointerface based on cross-linked branched DNA nanostructures for ultrasensitive nucleic acid detection. Biosens Bioelectron 2018;117:562-6.
102. Li J, Yu J, Huang Y, Zhao H, Tian L. Highly stable and multiemissive silver nanoclusters synthesized in situ in a DNA hydrogel and their application for hydroxyl radical sensing. ACS Appl Mater Inter 2018;10:26075-83.
103. Liao R, Yang P, Wu W, Luo D, Yang D. A DNA tracer system for hydrological environment investigations. Environ Sci Technol 2018;52:1695-703.
104. Mondal S, Das S, Nandi AK. A review on recent advances in polymer and peptide hydrogels. Soft Matter 2020;16:1404-54.
105. Dai L, Wang Y, Li W, et al. A green all-polysaccharide hydrogel platform for sensing and electricity harvesting/storage. J Power Sources 2021;493:229711.
106. Nordqvist D, Vilgis TA. Rheological study of the gelation process of agarose-based solutions. Food Biophys 2011;6:450-60.
107. Han Q, Chen Y, Song W, et al. Fabrication of agarose hydrogel with patterned silver nanowires for motion sensor. Bio-des Manuf 2019;2:269-77.
108. Hu Y, Liu N, Chen K, et al. Resilient and self-healing hyaluronic acid/chitosan hydrogel with ion conductivity, low water loss, and freeze-tolerance for flexible and wearable strain sensor. Front Bioeng Biotechnol 2022;10:837750.
109. Lu J, Hu S, Li W, et al. A biodegradable and recyclable piezoelectric sensor based on a molecular ferroelectric embedded in a bacterial cellulose hydrogel. ACS Nano 2022;16:3744-55.
110. Li Y, Liu X, Gong Q, et al. Facile preparation of stretchable and self-healable conductive hydrogels based on sodium alginate/polypyrrole nanofibers for use in flexible supercapacitor and strain sensors. Int J Biol Macromol 2021;172:41-54.
111. Baumberger T, Ronsin O. Cooperative effect of stress and ion displacement on the dynamics of cross-link unzipping and rupture of alginate gels. Biomacromolecules 2010;11:1571-8.
112. Li T, Zhang X, Lacey SD, et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nat Mater 2019;18:608-13.
113. Lu X, Zheng L, Zhang H, Wang W, Wang ZL, Sun C. Stretchable, transparent triboelectric nanogenerator as a highly sensitive self-powered sensor for driver fatigue and distraction monitoring. Nano Energy 2020;78:105359.
114. Li R, Zhang K, Cai L, Chen G, he M. Highly stretchable ionic conducting hydrogels for strain/tactile sensors. Polymer 2019;167:154-8.
115. Wang Z, Liu Z, Zhao G, et al. Stretchable unsymmetrical piezoelectric BaTiO3 composite hydrogel for triboelectric nanogenerators and multimodal sensors. ACS Nano ;2022:1661-70.
116. Hao XP, Li CY, Zhang CW, et al. Self-shaping soft electronics based on patterned hydrogel with stencil-printed liquid metal. Adv Funct Mater 2021;31:2105481.
117. Zhou H, Wang M, Jin X, et al. Capacitive pressure sensors containing reliefs on solution-processable hydrogel electrodes. ACS Appl Mater Inter 2021;13:1441-51.
118. Gu J, Huang J, Chen G, et al. Multifunctional Poly(vinyl alcohol) nanocomposite organohydrogel for flexible strain and temperature sensor. ACS Appl Mater Inter 2020;12:40815-27.
119. Gao Y, Peng J, Zhou M, et al. A multi-model, large range and anti-freezing sensor based on a multi-crosslinked poly(vinyl alcohol) hydrogel for human-motion monitoring. J Mater Chem B 2020;8:11010-20.
120. Cai J, He Y, Zhou Y, et al. Polyethylene glycol grafted chitin nanocrystals enhanced, stretchable, freezing-tolerant ionic conductive organohydrogel for strain sensors. Compos Part A 2022;155:106813-23.
121. Yan J, Xia Y, Lai J, et al. Stretchable and thermally responsive semi-interpenetrating nanocomposite hydrogel for wearable strain sensors and thermal switch. Macro Mater Eng 2022;307:2100765.
122. Sohail M, Mudassir, Minhas MU, et al. Natural and synthetic polymer-based smart biomaterials for management of ulcerative colitis: a review of recent developments and future prospects. Drug Deliv Transl Res 2019;9:595-614.
123. Bashir S, Teo YY, Ramesh S, Ramesh K. Synthesis, characterization, properties of N-succinyl chitosan-g-poly (methacrylic acid) hydrogels and in vitro release of theophylline. Polymer 2016;92:36-49.
124. Wei Y, Xiang L, Zhu P, Qian Y, Zhao B, Chen G. Multifunctional organohydrogel-based ionic skin for capacitance and temperature sensing toward intelligent skin-like devices. Chem Mater 2021;33:8623-34.
125. Yang Y, Yang Y, Cao Y, et al. Anti-freezing, resilient and tough hydrogels for sensitive and large-range strain and pressure sensors. Chem Eng J 2021;403:126431.
126. Zhao L, Ren Z, Liu X, Ling Q, Li Z, Gu H. A multifunctional, self-healing, self-adhesive, and conductive sodium alginate/poly(vinyl alcohol) composite hydrogel as a flexible strain sensor. ACS Appl Mater Inter 2021;13:11344-55.
127. He F, You X, Gong H, et al. Stretchable, biocompatible, and multifunctional silk fibroin-based hydrogels toward wearable strain/pressure sensors and triboelectric nanogenerators. ACS Appl Mater Inter 2020;12:6442-50.
129. Zhao X, Chen F, Li Y, Lu H, Zhang N, Ma M. Bioinspired ultra-stretchable and anti-freezing conductive hydrogel fibers with ordered and reversible polymer chain alignment. Nat Commun 2018;9:3579.
130. Blackman LD, Gunatillake PA, Cass P, Locock KES. An introduction to zwitterionic polymer behavior and applications in solution and at surfaces. Chem Soc Rev 2019;48:757-70.
131. Morelle XP, Illeperuma WR, Tian K, Bai R, Suo Z, Vlassak JJ. Highly Stretchable and tough hydrogels below water freezing temperature. Adv Mater 2018;30:e1801541.
132. Chodankar NR, Dubal DP, Lokhande AC, Lokhande CD. Ionically conducting PVA-LiClO4 gel electrolyte for high performance flexible solid state supercapacitors. J Colloid Inter Sci 2015;460:370-6.
133. Duan J, Liang X, Guo J, Zhu K, Zhang L. Ultra-stretchable and force-sensitive hydrogels reinforced with chitosan microspheres embedded in polymer networks. Adv Mater 2016;28:8037-44.
134. Bideau J, Viau L, Vioux A. Ionogels, ionic liquid based hybrid materials. Chem Soc Rev 2011;40:907-25.
135. Sun H, Zhao Y, Jiao S, et al. Environment tolerant conductive nanocomposite organohydrogels as flexible strain sensors and power sources for sustainable electronics. Adv Funct Mater 2021;31:2101696.
136. Xiang S, Chen S, Yao M, Zheng F, Lu Q. Strain sensor based on a flexible polyimide ionogel for application in high- and low-temperature environments. J Mater Chem C 2019;7:9625-32.
137. Li W, Li L, Zheng S, et al. Recyclable, healable, and tough ionogels insensitive to crack propagation. Adv Mater 2022;34:e2203049.
138. Lee Y, Lim S, Song WJ, et al. Triboresistive touch sensing: grid-free touch-point recognition based on monolayered ionic power generators. Adv Mater 2022;34:e2108586.
140. Chun KY, Seo S, Han CS. A wearable all-gel multimodal cutaneous sensor enabling simultaneous single-site monitoring of cardiac-related biophysical signals. Adv Mater 2022;34:e2110082.
141. Tamate R, Watanabe M. Recent progress in self-healable ion gels. Sci Technol Adv Mater 2020;21:388-401.
142. Watanabe T, Takahashi R, Ono T. Preparation of tough, thermally stable, and water-resistant double-network ion gels consisting of silica nanoparticles/poly(ionic liquid)s through photopolymerisation of an ionic monomer and subsequent solvent removal. Soft Matter 2020;16:1572-81.
143. Crump MR, Gong AT, Chai D, et al. Monolithic 3D printing of embeddable and highly stretchable strain sensors using conductive ionogels. Nanotechnology 2019;30:364002.
144. Lee JH, Lee AS, Lee JC, Hong SM, Hwang SS, Koo CM. Multifunctional mesoporous ionic gels and scaffolds derived from polyhedral oligomeric silsesquioxanes. ACS Appl Mater Inter 2017;9:3616-23.
145. Song H, Luo Z, Zhao H, et al. High tensile strength and high ionic conductivity bionanocomposite ionogels prepared by gelation of cellulose/ionic liquid solutions with nano-silica. RSC Adv 2013;3:11665.
146. Du A, Zhou B, Zhang Z, Shen J. A special material or a new state of matter: a review and reconsideration of the aerogel. Materials 2013;6:941-68.
147. Han S, Alvi NUH, Granlöf L, et al. A multiparameter pressure-temperature-humidity sensor based on mixed ionic-electronic cellulose aerogels. Adv Sci 2019;6:1802128.
148. Zhang L, Liao Y, Wang YC, et al. Cellulose II aerogel-based triboelectric nanogenerator. Adv Funct Mater 2020;30:2001763.
149. Zhang H, Han W, Xu K, et al. Metallic Sandwiched-aerogel hybrids enabling flexible and stretchable intelligent sensor. Nano Lett 2020;20:3449-58.
150. An B, Ma Y, Li W, Su M, Li F, Song Y. Three-dimensional multi-recognition flexible wearable sensor via graphene aerogel printing. Chem Commun 2016;52:10948-51.
151. Ma Y, Yue Y, Zhang H, et al. 3D Synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 2018;12:3209-16.
152. Shimizu T, Kanamori K, Nakanishi K. Silicone-based organic-inorganic hybrid aerogels and Xerogels. Chemistry 2017;23:5176-87.
153. Wang L, Zhang X, He Y, et al. Ultralight conductive and elastic aerogel for skeletal muscle atrophy regeneration. Adv Funct Mater 2019;29:1806200.
154. Yu ZL, Yang N, Apostolopoulou-Kalkavoura V, et al. Fire-Retardant and thermally insulating phenolic-silica aerogels. Angew Chem Int Ed Engl 2018;57:4538-42.
155. Zhu L, Zong L, Wu X, et al. Shapeable fibrous aerogels of metal-organic-frameworks templated with nanocellulose for rapid and large-capacity adsorption. ACS Nano 2018;12:4462-8.
156. Huang L, Guo H, Long C, et al. Regenerated silk fibroin-modified soft graphene aerogels for supercapacitive stress sensors. J Electrochem Soc 2021;168:117511.
157. Wu J, Li H, Lai X, Chen Z, Zeng X. Conductive and superhydrophobic F-rGO@CNTs/chitosan aerogel for piezoresistive pressure sensor. Chem Eng J 2020;386:123998.
158. Yu J, Zhang K, Deng Y. Recent progress in pressure and temperature tactile sensors: Principle, classification, integration and outlook. Soft Science 2021;1:6-29.