REFERENCES
1. Guiseppi-Elie A. Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials 2010;31:2701-16.
2. Li G, Li C, Li G, et al. Development of conductive hydrogels for fabricating flexible strain sensors. Small 2022;18:e2101518.
3. Hu S, Zhou L, Tu L, et al. Elastomeric conductive hybrid hydrogels with continuous conductive networks. J Mater Chem B 2019;7 :2389-97.
4. Gan D, Han L, Wang M, et al. Conductive and tough hydrogels based on biopolymer molecular templates for controlling in situ formation of polypyrrole nanorods. ACS Appl Mater Interfaces 2018;10:36218-28.
5. Rong Q, Lei W, Liu M. Conductive hydrogels as smart materials for flexible electronic devices. Chemistry 2018;24:16930-43.
6. Wang Z, Cong Y, Fu J. Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. J Mater Chem B 2020;8:3437-59.
7. Sun X, Yao F, Li J. Nanocomposite hydrogel-based strain and pressure sensors: a review. J Mater Chem A 2020;8:18605-23.
8. Zhang YZ, El-Demellawi JK, Jiang Q, G et al. MXene hydrogels: fundamentals and applications. Chem Soc Rev 2020;49:7229-51.
9. Wang Q, Pan X, Wang X, et al. Fabrication strategies and application fields of novel 2D Ti3C2Tx (MXene) composite hydrogels: A mini-review. Ceram Int 2021;47:4398-403.
10. Vieira S, da Silva Morais A, Garet E, et al. Methacrylated gellan gum/poly-l-lysine polyelectrolyte complex beads for cell-based therapies. ACS Biomater Sci Eng 2021;7:4898-913.
11. Lee CJ, Wu H, Hu Y, et al. Ionic conductivity of polyelectrolyte hydrogels. ACS Appl Mater Interfaces 2018;10:5845-52.
12. Wei J, Zhou J, Su S, Jiang J, Feng J, Wang Q. Water-deactivated polyelectrolyte hydrogel electrolytes for flexible high-voltage supercapacitors. ChemSusChem 2018;11:3410-5.
13. Rosso F, Barbarisi A, Barbarisi M, et al. New polyelectrolyte hydrogels for biomedical applications. Mater Sci Eng C 2003;23:371-6.
14. Rao KM, Kumar A, Han SS. Polysaccharide-based magnetically responsive polyelectrolyte hydrogels for tissue engineering applications. J Mater Sci Technol 2018;34:1371-7.
15. Lam J, Clark EC, Fong EL, et al. Evaluation of cell-laden polyelectrolyte hydrogels incorporating poly(L-Lysine) for applications in cartilage tissue engineering. Biomaterials 2016;83:332-46.
16. Kwon HJ, Yasuda K, Gong JP, Ohmiya Y. Polyelectrolyte hydrogels for replacement and regeneration of biological tissues. Macromol Res 2014;22:227-35.
17. Patil J, Kamalapur M, Marapur S, Kadam D. Ionotropic gelation and polyelectrolyte complexation: the novel techniques to design hydrogel particulate sustained, modulated drug delivery system: a review. Dig J Nanomater Biostruct 2010;5:241-8.
18. Kwon HJ. Tissue engineering of muscles and cartilages using polyelectrolyte hydrogels. Adv Mater Sci Eng 2014;2014:1-7.
19. Lu X, Yu M, Wang G, Tong Y, Li Y. Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ Sci 2014;7:2160-81.
20. Zhu C, Yang P, Chao D, et al. All metal nitrides solid-state asymmetric supercapacitors. Adv Mater 2015;27:4566-71.
21. Wu C, Lu X, Peng L, et al. Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors. Nat Commun 2013;4:2431.
22. Yang C, Suo Z. Hydrogel ionotronics. Nat Rev Mater 2018;3:125-42.
23. Heo S, Seo H, Song C, Shin S, Kwon K. Polyelectrolyte-derived adhesive, super-stretchable hydrogel for a stable, wireless wearable sensor. J Mater Chem C 2021;9:16778-87.
24. Zhou Y, Fei X, Tian J, Xu L, Li Y. A ionic liquid enhanced conductive hydrogel for strain sensing applications. J Colloid Interface Sci 2022;606:192-203.
25. Diao W, Wu L, Ma X, et al. Reversibly highly stretchable and self-healable zwitterion-containing polyelectrolyte hydrogel with high ionic conductivity for high-performance flexible and cold-resistant supercapacitor. J Appl Polym Sci 2020;137:48995.
26. Tiyapiboonchaiya C, Pringle JM, Sun J, et al. The zwitterion effect in high-conductivity polyelectrolyte materials. Nat Mater 2003;3:29-32.
27. Peng X, Liu H, Yin Q, et al. A zwitterionic gel electrolyte for efficient solid-state supercapacitors. Nat Commun 2016;7:11782.
28. Diao W, Wu L, Ma X, et al. Highly stretchable, ionic conductive and self-recoverable zwitterionic polyelectrolyte-based hydrogels by introducing multiple supramolecular sacrificial bonds in double network. J Appl Polym Sci 2019;136:47783.
29. Wang D, Gong X, Heeger PS, Rininsland F, Bazan GC, Heeger AJ. Biosensors from conjugated polyelectrolyte complexes. Proc Nat Acad Sci USA 2002;99:49-53.
30. Cao B, Lee CJ, Zeng Z, et al. Electroactive poly(sulfobetaine-3,4-ethylenedioxythiophene) (PSBEDOT) with controllable antifouling and antimicrobial properties. Chem Sci 2016;7:1976-81.
31. Na YH. Double network hydrogels with extremely high toughness and their applications. Korea-Aust Rheol J 2013;25:185-96.
32. Hou W, Sheng N, Zhang X, et al. Design of injectable agar/NaCl/polyacrylamide ionic hydrogels for high performance strain sensors. Carbohydr Polym 2019;211:322-8.
33. Tian X, Yang P, Yi Y, et al. Self-healing and high stretchable polymer electrolytes based on ionic bonds with high conductivity for lithium batteries. J Power Sources 2020:450.
34. Xu J, Chen J, Zhang Y, Liu T, Fu J. A fast room-temperature self-healing glassy polyurethane. Angew Chem Int Ed Engl 2021;60:7947-55.
35. Ye S, Ma W, Shao W, Ejeromedoghene O, Fu G, Kang M. Gradient dynamic cross-linked photochromic multifunctional polyelectrolyte hydrogels for visual display and information storage application. Polymer 2022;243:124642.
36. Song H, Sun Y, Zhu J, Xu J, Zhang C, Liu T. Hydrogen-bonded network enables polyelectrolyte complex hydrogels with high stretchability, excellent fatigue resistance and self-healability for human motion detection. Composit Part B Eng 2021;217:108901.
37. Chen Q, Zhu L, Huang L, et al. Fracture of the physically cross-linked first network in hybrid double network hydrogels. Macromolecules 2014;47:2140-8.
38. Chen Q, Wei D, Chen H, et al. Simultaneous enhancement of stiffness and toughness in hybrid double-network hydrogels via the first, physically linked network. Macromolecules 2015;48:8003-10.
39. Sun TL, Kurokawa T, Kuroda S, et al. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat Mater 2013;12:932-7.
40. Peng K, Wang W, Zhang J, et al. Preparation of chitosan/sodium alginate conductive hydrogels with high salt contents and their application in flexible supercapacitors. Carbohydr Polym 2022;278:118927.
41. Zhao J, Chen Y, Yao Y, et al. Preparation of the polyelectrolyte complex hydrogel of biopolymers via a semi-dissolution acidification sol-gel transition method and its application in solid-state supercapacitors. J Power Sources 2018;378:603-9.
42. Park S, Parida K, Lee PS. Deformable and transparent ionic and electronic conductors for soft energy devices. Adv Energy Mater 2017;7:1701369.
43. Gong JP. Why are double network hydrogels so tough? Soft Matter 2010;6:2583-90.
44. Wei S, Qu G, Luo G, et al. Scalable and automated fabrication of conductive tough-hydrogel microfibers with ultrastretchability, 3D printability, and stress sensitivity. ACS Appl Mater Interfaces 2018;10:11204-12.
45. Yu HC, Zheng SY, Fang L, et al. Reversibly transforming a highly swollen polyelectrolyte hydrogel to an extremely tough one and its application as a tubular grasper. Adv Mater 2020;32:2005171.
46. Yin H, Akasaki T, Lin ST, et al. Double network hydrogels from polyzwitterions: high mechanical strength and excellent anti-biofouling properties. J Mater Chem B 2013;1:3685-93.
47. Huang KT, Hsieh PS, Dai LG, Huang CJ. Complete zwitterionic double network hydrogels with great toughness and resistance against foreign body reaction and thrombus. J Mater Chem B 2020;8:7390-02.
48. Kim ES, Song DB, Choi KH, Lee JH, Suh DH, Choi WJ. Robust and recoverable dual cross-linking networks in pressure-sensitive adhesives. J Polym Sci 2020;58:3358-69.
49. Cao J, Wang Y, He C, Kang Y, Zhou J. Ionically crosslinked chitosan/poly(acrylic acid) hydrogels with high strength, toughness and antifreezing capability. Carbohydr Polym 2020;242:116420.
50. Han Z, Zhou P, Duan C. Extremely stretchable, stable and antibacterial double network organogels based on hydrogen bonding interaction. Colloids Surfaces A Physicochem Eng Aspects 2020;602:125065.
51. Feng Z, Zuo H, Gao W, Ning N, Tian M, Zhang L. A robust, self-healable, and shape memory supramolecular hydrogel by multiple hydrogen bonding interactions. Macromol Rapid Commun 2018;39:1800138.
52. Wei Z, Yang JH, Zhou J, et al. Self-healing gels based on constitutional dynamic chemistry and their potential applications. Chem Soc Rev 2014;43:8114-31.
53. Yuan T, Cui X, Liu X, Qu X, Sun J. Highly tough, stretchable, self-healing, and recyclable hydrogels reinforced by in situ-formed polyelectrolyte complex nanoparticles. Macromolecules 2019;52:3141-9.
54. Fang X, Sun J. One-step synthesis of healable weak-polyelectrolyte-based hydrogels with high mechanical strength, toughness, and excellent self-recovery. ACS Macro Letters 2019;8:500-5.
55. Wu J, Wu Z, Lu X, et al. Ultrastretchable and stable strain sensors based on antifreezing and self-healing ionic organohydrogels for human motion monitoring. ACS Appl Mater Interfaces 2019;11:9405-14.
56. Liu H, Wang X, Cao Y, et al. Freezing-tolerant, highly sensitive strain and pressure sensors assembled from ionic conductive hydrogels with dynamic cross-links. ACS Appl Mater Interfaces 2020;12:25334-44.
57. Zhou D, Chen F, Handschuh-Wang S, Gan T, Zhou X, Zhou X. Biomimetic extreme-temperature- and environment-adaptable hydrogels. Chemphyschem 2019;20:2139-54.
58. Cheng Y, Zang J, Zhao X, Wang H, Hu Y. Nanocellulose-enhanced organohydrogel with high-strength, conductivity, and anti-freezing properties for wearable strain sensors. Carbohydr Polym 2022;277:118872.
59. Morelle XP, Illeperuma WR, Tian K, Bai R, Suo Z, Vlassak JJ. Highly stretchable and tough hydrogels below water freezing temperature. Adv Mater 2018;30:1801541.
60. Zhao R, Yang H, Nie B, Hu L. Highly transparent, antifreezing and stretchable conductive organohydrogels for strain and pressure sensors. Sci China Tech Sci 2021;64:2532-40.
61. Dashnau JL, Nucci NV, Sharp KA, Vanderkooi JM. Hydrogen bonding and the cryoprotective properties of glycerol/water mixtures. J Phys Chem B 2006;110:13670-77.
62. Ying B, Chen RZ, Zuo R, Li J, Liu X. An anti-freezing, ambient-stable and highly stretchable ionic skin with strong surface adhesion for wearable sensing and soft robotics. Adv Funct Mater 2021;31:2104665.
63. Shao C, Wang M, Meng L, et al. Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties. Chem Mat 2018;30:3110-21.
64. Gan D, Xing W, Jiang L, et al. Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry. Nat Commun 2019;10:1487.
65. Fu C, Lin J, Tang Z, et al. Design of asymmetric-adhesion lignin reinforced hydrogels with anti-interference for strain sensing and moist air induced electricity generator. Int J Biol Macromol 2022;201:104-10.
66. Wang J, Wang L, Wu C, et al. Antibacterial zwitterionic polyelectrolyte hydrogel adhesives with adhesion strength mediated by electrostatic mismatch. ACS Appl Mater Interfaces 2020;12:46816-26.
67. Akhtar MF, Hanif M, Ranjha NM. Methods of synthesis of hydrogels ... A review. Saudi Pharm J 2016;24:554-9.
68. Hu X, Wang Y, Zhang L, Xu M. Formation of self-assembled polyelectrolyte complex hydrogel derived from salecan and chitosan for sustained release of Vitamin C. Carbohydr Polym 2020;234:115920.
69. Huang KT, Ishihara K, Huang CJ. Polyelectrolyte and antipolyelectrolyte effects for dual salt-responsive interpenetrating network hydrogels. Biomacromolecules 2019;20:3524-34.
70. Tong Z, Yang J, Lin L, et al. In situ synthesis of poly (gamma- glutamic acid)/alginate/AgNP composite microspheres with antibacterial and hemostatic properties. Carbohydr Polym 2019;221:21-8.
71. Maiz-Fernandez S, Perez-Alvarez L, Ruiz-Rubio L, Vilas-Vilela JL, Lanceros-Mendez S. Polysaccharide-based in situ self-healing hydrogels for tissue engineering applications. Polymers (Basel) 2020;12:2261.
72. Li YQ, Zhu WB, Yu XG, et al. Multifunctional wearable device based on flexible and conductive carbon sponge/polydimethylsiloxane composite. ACS Appl Mater Interfaces 2016;8:33189-96.
73. Yao S, Zhu Y. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 2014;6:2345-52.
74. Zhang J, Chen L, Shen B, et al. Highly transparent, self-healing, injectable and self-adhesive chitosan/polyzwitterion-based double network hydrogel for potential 3D printing wearable strain sensor. Mater Sci Eng C Mater Biol Appl 2020;117:111298.
75. Sui X, Guo H, Cai C, et al. Ionic conductive hydrogels with long-lasting antifreezing, water retention and self-regeneration abilities. Chem Eng J 2021;419:129478.
76. Dos Santos CA, Seckler MM, Ingle AP, et al. Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharm Sci 2014;103:1931-44.
77. Teymourinia H, Salavati-Niasari M, Amiri O. Simple synthesis of Cu2O/GQDs nanocomposite with different morphologies fabricated by tuning the synthesis parameters as novel antibacterial material. Composit Part B Eng 2019;172:785-94.
78. Chen T, Chen Y, Rehman HU, et al. Ultratough, self-healing, and tissue-adhesive hydrogel for wound dressing. ACS Appl Mater Interfaces 2018;10:33523-31.
79. Yang J, Chen Y, Zhao L, et al. Preparation of a chitosan/carboxymethyl chitosan/AgNPs polyelectrolyte composite physical hydrogel with self-healing ability, antibacterial properties, and good biosafety simultaneously, and its application as a wound dressing. Composit Part B Eng 2020;197:108139.
80. Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 2008;60:1638-49.