REFERENCES

1. Mohammed A, Elshaer A, Sareh P, Elsayed M, Hassanin H. Additive manufacturing technologies for drug delivery applications. Int J Pharm 2020;580:119245.

2. Sheoran A, Kumar H. Fused deposition modeling process parameters optimization and effect on mechanical properties and part quality: review and reflection on present research. Mater Today Proc 2020;21:1659-72.

3. Abdulhameed O, Al-ahmari A, Ameen W, Mian SH. Additive manufacturing: challenges, trends, and applications. Adv Mech Eng 2019;11:168781401882288.

4. Daminabo S, Goel S, Grammatikos S, Nezhad H, Thakur V. Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems. Mater Today Chem 2020;16:100248.

5. Krieger KJ, Bertollo N, Dangol M, Sheridan JT, Lowery MM, O’Cearbhaill ED. Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing. Microsyst Nanoeng 2019;5:42.

6. Dey A, Yodo N. A systematic survey of FDM process parameter optimization and their influence on part characteristics. JMMP 2019;3:64.

7. Solomon IJ, Sevvel P, Gunasekaran J. A review on the various processing parameters in FDM. Mater Today Proc 2021;37:509-14.

8. Zharylkassyn B, Perveen A, Talamona D. Effect of process parameters and materials on the dimensional accuracy of FDM parts. Mater Today Proc 2021;44:1307-11.

9. Elkasabgy NA, Mahmoud AA, Maged A. 3D printing: an appealing route for customized drug delivery systems. Int J Pharm 2020;588:119732.

10. Casavola C, Cazzato A, Moramarco V, Pappalettere C. Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory. Mater Des 2016;90:453-8.

11. Mohamed OA, Masood SH, Bhowmik JL. Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv Manuf 2015;3:42-53.

12. Shaqour B, Abuabiah M, Abdel-fattah S, et al. Gaining a better understanding of the extrusion process in fused filament fabrication 3D printing: a review. Int J Adv Manuf Technol 2021;114:1279-91.

13. Khudiakova A, Arbeiter F, Spoerk M, Wolfahrt M, Godec D, Pinter G. Inter-layer bonding characterisation between materials with different degrees of stiffness processed by fused filament fabrication. Addit Manuf 2019;28:184-93.

14. Li L, Sun Q, Bellehumeur CT, Gu P. Investigation of bond formation in FDM process. Mater Sci 2002:400-7.

15. Garzon-hernandez S, Garcia-gonzalez D, Jérusalem A, Arias A. Design of FDM 3D printed polymers: An experimental-modelling methodology for the prediction of mechanical properties. Mater Des 2020;188:108414.

16. Ngo TD, Kashani A, Imbalzano G, Nguyen KT, Hui D. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos Part B Eng 2018;143:172-96.

17. Hager I, Golonka A, Putanowicz R. 3D Printing of buildings and building components as the future of sustainable construction? Procedia Eng 2016;151:292-9.

18. Colpani A, Fiorentino A, Ceretti E. Design and fabrication of customized tracheal stents by additive manufacturing. Procedia Manuf 2020;47:1029-35.

19. Serra T, Capelli C, Toumpaniari R, et al. Design and fabrication of 3D-printed anatomically shaped lumbar cage for intervertebral disc (IVD) degeneration treatment. Biofabrication 2016;8:035001.

20. Cailleaux S, Sanchez-Ballester NM, Gueche YA, Bataille B, Soulairol I. Fused deposition modeling (FDM), the new asset for the production of tailored medicines. J Control Release 2021;330:821-41.

21. Chen G, Xu Y, Chi Lip Kwok P, Kang L. Pharmaceutical applications of 3D printing. Addit Manuf 2020;34:101209.

22. Rajan K, Samykano M, Kadirgama K, Harun WSW, Rahman MM. Fused deposition modeling: process, materials, parameters, properties, and applications. Int J Adv Manuf Technol 2022;120:1531-70.

23. Kovan V, Altan G, Topal ES. Effect of layer thickness and print orientation on strength of 3D printed and adhesively bonded single lap joints. J Mechan Sci Technol 2017;31:2197-201.

24. Penumakala PK, Santo J, Thomas A. A critical review on the fused deposition modeling of thermoplastic polymer composites. Compos Part B Eng 2020;201:108336.

25. Balani S, Chabert F, Nassiet V, Cantarel A. Influence of printing parameters on the stability of deposited beads in fused filament fabrication of poly(lactic) acid. Addit Manuf 2019;25:112-21.

26. Sukindar NA, Ariffin MKA, Baharudin BTHT, Jaafar CNA, Ismail MIS. Analyzing the effect of nozzle diameter in fused deposition modeling for extruding polylactic acid using open source 3D printing. J Teknol 2016;78:7-15.

27. Triyono J, Sukanto H, Saputra RM, Smaradhana DF. The effect of nozzle hole diameter of 3D printing on porosity and tensile strength parts using polylactic acid material. Open Eng 2020;10:762-8.

28. Mwema FM, Akinlabi ET. Basics of fused deposition modelling (FDM), Fused deposition modeling. Cham: Springer International Publishing; 2020. pp. 1-15.

29. Ahn S, Montero M, Odell D, Roundy S, Wright PK. Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp J 2002;8:248-57.

30. Vasudevarao B, Natarajan D, Henderson M. Sensitivity of Rp surface finish to process parameter variation. Solid Freeform Fabricat Proc 2000:251-8.

31. Garzon-hernandez S, Arias A, Garcia-gonzalez D. A continuum constitutive model for FDM 3D printed thermoplastics. Compos Part B Eng 2020;201:108373.

32. Rajpurohit SR, Dave HK. Analysis of tensile strength of a fused filament fabricated PLA part using an open-source 3D printer. Int J Adv Manuf Technol 2019;101:1525-36.

33. Elkholy A, Kempers R. .

34. Rajpurohit SR, Dave HK. Flexural strength of fused filament fabricated (FFF) PLA parts on an open-source 3D printer. Adv Manuf 2018;6:430-41.

35. Çakan BG. Effects of raster angle on tensile and surface roughness properties of various FDM filaments. J Mech Sci Technol 2021;35:3347-53.

36. DeCicco A, Faust J. .

37. Galantucci L, Lavecchia F, Percoco G. Experimental study aiming to enhance the surface finish of fused deposition modeled parts. CIRP Annals 2009;58:189-92.

38. Cabreira V, Santana RMC. Effect of infill pattern in fused filament fabrication (FFF) 3D printing on materials performance. Matéria 2020;25:e-12826.

39. Maidin S, Muhamad M, Pei E. Feasibility study of ultrasonic frequency application on fdm to improve parts surface finish. J Teknol 2015;77:27-35.

40. Ayrilmis N. Effect of layer thickness on surface properties of 3D printed materials produced from wood flour/PLA filament. Polym Test 2018;71:163-6.

41. Reddy V, Flys O, Chaparala A, Berrimi CE, V A, Rosen B. Study on surface texture of Fused Deposition Modeling. Procedia Manuf 2018;25:389-96.

42. Pandey PM, Venkata Reddy N, Dhande SG. Improvement of surface finish by staircase machining in fused deposition modeling. J Mater Process Technol 2003;132:323-31.

43. Buj-Corral I, Domínguez-Fernández A, Durán-Llucià R. Influence of print orientation on surface roughness in fused deposition modeling (FDM) processes. Materials 2019;12:3834.

44. Wang P, Zou B, Xiao H, Ding S, Huang C. Effects of printing parameters of fused deposition modeling on mechanical properties, surface quality, and microstructure of PEEK. J Mater Proc Technol 2019;271:62-74.

45. Anitha R, Arunachalam S, Radhakrishnan P. Critical parameters influencing the quality of prototypes in fused deposition modelling. J Mater Proc Technol 2001;118:385-8.

46. Nidagundi V, Keshavamurthy R, Prakash C. Studies on parametric optimization for fused deposition modelling process. Mater Today Proc 2015;2:1691-9.

47. Pérez M, Medina-Sánchez G, García-Collado A, Gupta M, Carou D. Surface quality enhancement of fused deposition modeling (fdm) printed samples based on the selection of critical printing parameters. Materials (Basel) 2018;11:1382.

48. Peng T, Yan F. Dual-objective analysis for desktop FDM printers: energy consumption and surface roughness. Procedia CIRP 2018;69:106-11.

49. Chohan JS, Kumar R, Yadav A, et al. Optimization of FDM printing process parameters on surface finish, thickness, and outer dimension with ABS polymer specimens using taguchi orthogonal array and genetic algorithms. Math Prob Eng 2022;2022:1-13.

50. Kumar SD, Kannan VN, Sankaranarayanan G. Parameter optimization of ABS-M30i parts produced by fused deposition modeling for minimum surface roughness. Int J Curr Eng Technol 2014;3:93-7. Available from: https://www.researchgate.net/publication/262529212 [Last accessed on 29 June 2022].

51. Sukindar NA. Optimization of the parameters for surface quality of the open-source 3D printing. J Mechan Eng 2017;3:33-3. Available from: https://ir.uitm.edu.my/id/eprint/38508 [Last accessed on 29 June 2022].

52. Lalehpour A, Barari A. Post processing for fused deposition modeling parts with acetone vapour bath. IFAC-PapersOnLine 2016;49:42-8.

53. Abbas TF, Othman FM, Ali HB. Influence of layer thickness on impact property of 3D-printed PLA. Int Res J Eng Technol 2018;5:1-4. Available from: https://www.irjet.net/archives/V5/i2/IRJET [Last accessed on 29 June 2022].

54. Coogan TJ, Kazmer DO. Bond and part strength in fused deposition modeling. RPJ 2017;23:414-22.

55. Rankouhi B, Javadpour S, Delfanian F, Letcher T. Failure analysis and mechanical characterization of 3D printed ABS with respect to layer thickness and orientation. J Fail Anal Preven 2016;16:467-81.

56. Leon R, Ling T, Lease J. Optimizing layer thickness and print orientation of 3D objects for enhanced mechanical property using STRUCTO 3D printers. Available from: https://docplayer.net/39789245-Optimizing-layer-thickness-and-print-orientation-of-3d-objects-for-enhanced-mechanical-property-using-structo-3d-printers.html [Last accessed on 29 June 2022].

57. Alafaghani A, Qattawi A, Alrawi B, Guzman A. Experimental optimization of fused deposition modelling processing parameters: a design-for-manufacturing approach. Procedia Manuf 2017;10:791-803.

58. Wu W, Geng P, Li G, Zhao D, Zhang H, Zhao J. Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS. Materials 2015;8:5834-46.

59. Sharma M, Sharma V, Kala P. Optimization of process variables to improve the mechanical properties of FDM structures. J Phys Conf Ser 2019;1240:012061.

60. Ramkumar P. Investigation on the effect of process parameters on impact strength of fused deposition modelling specimens. IOP Conf Ser Mater Sci Eng 2019;491:012026.

61. Rodríguez-Panes A, Claver J, Camacho AM. The influence of manufacturing parameters on the mechanical behaviour of PLA and ABS pieces manufactured by FDM: a comparative analysis. Materials 2018;11:1333.

62. Hussin R, Abd SZ, Rahim A, et al. Optimization parameter effects on the strength of 3D-printing process using Taguchi method. AIP Conf Proc Appl Phys Condens Matter 2019;2129:020154.

63. Vicente CM, Martins TS, Leite M, Ribeiro A, Reis L. Influence of fused deposition modeling parameters on the mechanical properties of ABS parts. Polym Adv Technol 2019;31:501-7.

64. Aloyaydi B, Sivasankaran S, Mustafa A. Investigation of infill-patterns on mechanical response of 3D printed poly-lactic-acid. Polym Test 2020;87:106557.

65. Attoye S, Malekipour E, El-mounayri H. .

66. Abdelrhman AM, Wei Gan W, Kurniawan D. Effect of part orientation on dimensional accuracy, part strength, and surface quality of three dimensional printed part. IOP Conf Ser Mater Sci Eng 2019;694:012048.

67. Eryildiz M. Effect of build orientation on mechanical behaviour and build time of FDM 3D-Printed PLA parts: an experimental investigation. Eur Mechan Sci 2021;5:116-20.

68. Vishwas M, Basavaraj C, Vinyas M. Experimental investigation using taguchi method to optimize process parameters of fused deposition modeling for ABS and nylon materials. Mater Today Proc 2018;5:7106-14.

69. Raut S, Jatti VS, Khedkar NK, Singh T. Investigation of the effect of built orientation on mechanical properties and total cost of FDM parts. Procedia Mater Sci 2014;6:1625-30.

70. Wang P, Zou B, Ding S, Li L, Huang C. Effects of FDM-3D printing parameters on mechanical properties and microstructure of CF/PEEK and GF/PEEK. Chinese J Aeronaut 2021;34:236-46.

71. Miazio Ł. Impact of print speed on strength of samples printed in FDM technology. Agric Eng 2019;23:33-8.

72. Hwang S, Reyes EI, Moon K, Rumpf RC, Kim NS. Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process. J Elec Mater 2015;44:771-7.

73. Pascual A, Toma M, Tsotra P, Grob MC. On the stability of PEEK for short processing cycles at high temperatures and oxygen-containing atmosphere. Polym Degrad Stab 2019;165:161-9.

74. Syrlybayev D, Zharylkassyn B, Seisekulova A, Akhmetov M, Perveen A, Talamona D. Optimisation of strength properties of FDM printed parts-a critical review. Polymers 2021;13:1587.

75. Zhou X, Hsieh S, Sun Y. Experimental and numerical investigation of the thermal behaviour of polylactic acid during the fused deposition process. Virt Phys Prototyp 2017;12:221-33.

76. Carneiro O, Silva A, Gomes R. Fused deposition modeling with polypropylene. Mater Des 2015;83:768-76.

77. Liu X, Zhang M, Li S, Si L, Peng J, Hu Y. Mechanical property parametric appraisal of fused deposition modeling parts based on the gray Taguchi method. Int J Adv Manuf Technol 2017;89:2387-97.

78. Abdullah ZZ, Ting HY, Ali MAM, et al. The effect of layer thickness and raster angles on tensile strength and flexural strength for fused deposition modeling (FDM) parts. J Adv Manuf Technol 2017;12:147-58. Available from: https://jamt.utem.edu.my/jamt/article/view/4905 [Last accessed on 29 June 2022].

79. Prasada Rao V, Rajiv P, Navya Geethika V. Effect of fused deposition modelling (FDM) process parameters on tensile strength of carbon fibre PLA. Mater Today Proc 2019;18:2012-8.

80. Christiyan K, Chandrasekhar U, Rajesh Mathivanan N, Venkateswarlu K. Influence of manufacturing parameters on the strength of PLA parts using layered manufacturing technique: a statistical approach. IOP Conf Ser Mater Sci Eng 2018;310:012134.

81. Hasçelik S, Öztürk ÖT, Özerinç S. Mechanical Properties of Nylon Parts Produced by Fused Deposition Modeling. Int J Mod Manuf Technol 2021;13:34-8.

82. Palić N, Slavković V, Jovanović Ž, Živić F, Grujović N. Mechanical behaviour of small load bearing structures fabricated by 3D printing. Appl Eng Lett 2019;4:88-92.

83. George E, Liacouras P, Rybicki FJ, Mitsouras D. Measuring and establishing the accuracy and reproducibility of 3D printed medical models. Radiographics 2017;37:1424-50.

84. Farias C, Lyman R, Hemingway C, et al. Three-dimensional (3D) printed microneedles for microencapsulated cell extrusion. Bioengineering (Basel) 2018;5:59.

85. Jose PA. 3D Printing of pharmaceuticals-a potential technology in developing personalized medicine. Asian J Pharm Res Dev 2018;6:46-54.

86. Galantucci L, Bodi I, Kacani J, Lavecchia F. Analysis of dimensional performance for a 3D open-source printer based on fused deposition modeling technique. Procedia CIRP 2015;28:82-7.

87. Sood AK. .

88. Nancharaiah T, Raju D, Raju V. An experimental investigation on surface quality and dimensional accuracy of FDM components. Int J Emerg Technol 2010;1:106-11. Available from: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.670.108 [Last accessed on 29 June 2022].

89. Milde J, Morovič L, Blaha J, Balc N. Influence of the layer thickness in the fused deposition modeling process on the dimensional and shape accuracy of the upper teeth model. MATEC Web Conf 2017;137:02006.

90. Xenikakis I, Tzimtzimis M, Tsongas K, et al. Fabrication and finite element analysis of stereolithographic 3D printed microneedles for transdermal delivery of model dyes across human skin in vitro. Eur J Pharm Sci 2019;137:104976.

91. Johnson AR, Procopio AT. Low cost additive manufacturing of microneedle masters. 3D Print Med 2019;5:2.

92. Hanon MM, Zsidai L, Ma Q. Accuracy investigation of 3D printed PLA with various process parameters and different colors. Mater Today Proc 2021;42:3089-96.

93. Elkaseer A, Schneider S, Scholz SG. Experiment-based process modeling and optimization for high-quality and resource-efficient FFF 3D printing. Appl Sci 2020;10:2899.

94. Valerga AP, Batista M, Fernandez-Vidal SR, Gamez AJ. Impact of chemical post-processing in fused deposition modelling (FDM) on polylactic acid (PLA) surface quality and structure. Polymers (Basel) 2019;11:566.

95. Frunzaverde D, Cojocaru V, Ciubotariu CR, et al. The influence of the printing temperature and the filament color on the dimensional accuracy, tensile strength, and friction performance of FFF-printed PLA specimens. Polymers (Basel) 2022;14:1978.

96. Choi Y, Kim C, Jeong H, Youn J. Influence of bed temperature on heat shrinkage shape error in fdm additive manufacturing of the abs-engineering plastic. WJET 2016;4:186-92.

97. Turner N, Strong B, Gold RAS. A review of melt extrusion additive manufacturing processes: i Process design and modeling. Rapid Prototyp J 2014;20:192-204.

98. Harris M, Potgieter J, Archer R, Arif KM. In-process thermal treatment of polylactic acid in fused deposition modelling. Mater Manuf Proc 2019;34:701-13.

99. Rosli A, Shuib RK, Ishak KMK, Hamid ZAA, Abdullah MK, Rusli A. Influence of bed temperature on warpage, shrinkage and density of various acrylonitrile butadiene styrene (ABS) parts from fused deposition modelling (FDM). AIP Conf Proce 2020;2267:020072.

100. Agarwal KM, Shubham P, Bhatia D, Sharma P, Vaid H, Vajpeyi R. Analyzing the impact of print parameters on dimensional variation of ABS specimens printed using fused deposition modelling (FDM). Sensors Int 2022;3:100149.

101. Sood AK, Ohdar R, Mahapatra S. Improving dimensional accuracy of fused deposition modelling processed part using grey taguchi method. Mater Des 2009;30:4243-52.

102. Padhi SK, Sahu RK, Mahapatra SS, et al. Optimization of fused deposition modeling process parameters using a fuzzy inference system coupled with Taguchi philosophy. Adv Manuf 2017;5:231-42.

103. Marwah OMF, Yahaya NF, Darsani A, et al. Investigation for shrinkage deformation in the desktop 3D printer process by using DOE approach of the ABS materials. J Phys Conf Ser 2019;1150:012038.

104. Suaidi SNSW, Azizul MAB, Sulaiman SB. The effect of fused deposition modelling process parameters on the quality of abs product. J Automot Power Transport Technol 2021;2:45-58.

105. Robles GS, Delda RNM, Del Rosario RLB, Espino MT, Dizon JRC. Dimensional accuracy of 3D - printed acrylonitrile butadiene styrene: effect of size, layer thickness, and infill density. Key Eng Mater 2022;913:17-25.

106. Baraheni M, Shabgard MR, Tabatabaee AM, Adhami AH. Practical examining performance of the FDM 3D printed parts. Res Square 2022;1:1-25.

107. Chatzidai N, Karalekas D. Experimental and numerical study on the influence of critical 3D printing processing parameters. Frat Integrità Strutt 2019;13:407-13.

108. Wickramasinghe S, Do T, Tran P. FDM-based 3D printing of polymer and associated composite: a review on mechanical properties, defects and treatments. Polymers (Basel) 2020;12:1529.

109. Gurrala PK, Regalla SP. Part strength evolution with bonding between filaments in fused deposition modelling: This paper studies how coalescence of filaments contributes to the strength of final FDM part. Virtual Phys Prototyp 2014;9:141-9.

110. Seppala JE, Hoon Han S, Hillgartner KE, Davis CS, Migler KB. Weld formation during material extrusion additive manufacturing. Soft Matter 2017;13:6761-9.

111. Huang B, Singamneni S. Raster angle mechanics in fused deposition modelling. J Compos Mater 2015;49:363-83.

112. Weeren RV, Agarwala MK, Jamalabad VR, et al. Quality of parts processed by fused deposition. Mater Sci 1995; doi: 10.15781/T2CZ32Q6D.

113. Mali HS, Prajwal B, Gupta D, Kishan J. Abrasive flow finishing of FDM printed parts using a sustainable media. Rapid Prototyp J 2018;24:593-606.

114. .

115. Vinitha M, Rao A, Mallik M. Optimization of speed parameters in burnishing of samples fabricated by fused deposition modeling. Int J Mechan Indust Eng ;2013:243-5.

116. Žigon J, Kariž M, Pavlič M. Surface finishing of 3D-printed polymers with selected coatings. Polymers (Basel) 2020;12:2797.

117. Kumbhar NN, Mulay AV. Post processing methods used to improve surface finish of products which are manufactured by additive manufacturing technologies: a review. J Inst Eng India Ser C 2018;99:481-7.

118. Chohan JS, Singh R. Pre and post processing techniques to improve surface characteristics of FDM parts: a state of art review and future applications. Rapid Prototyp J 2017;23:495-513.

119. Hashmi AW, Mali HS, Meena A. The surface quality improvement methods for FDM printed parts: a review. In: Dave HK, Davim JP, editors. Fused deposition modeling based 3D printing. Cham: Springer International Publishing; 2021. pp. 167-94.

120. Luzanin O, Movrin D, Plancak M. Experimental Investigation of extrusion speed and temperature effect on arithmetic mean surface roughness in FDM-built specimens. J Technol Plast 2013;38:179-90. Available from: https://www.researchgate.net/publication/262255426 [Last accessed on 29 June 2022].

121. Prasad M, Venkatasubbareddy OY, Krishna NJ. Improving the surface roughness of FDM parts by using hybrid methods. Int J Eng Techni Res 2019;3:650-4.

122. Akande S. Dimensional accuracy and surface finish optimization of fused deposition modelling parts using desirability function analysis. Int J Eng Res Technol 2015;V4:196-202.

123. Chaidas D, Kitsakis K, Kechagias J, Maropoulos S. The impact of temperature changing on surface roughness of FFF process. IOP Conf Ser Mater Sci Eng 2016;161:012033.

124. Kishore KL, Reddy B. Effect of process parameters on the mechanical behavior of FDM processed PLA parts. Int J Manag Technol Eng 2018;8:718-23. Available from: http://ijamtes.org/gallery/78 [Last accessed on 29 June 2022].

125. Kovan V, Tezel TÇ, Topal ES, Çamurlu HE. Printing parameters effect on surface characteristics of 3D printed PLA materials. Int Sci J Mach Technol Mater 2018;269:266-9. Available from: https://stumejournals.com/journals/mtm/2018/7/266 [Last accessed on 29 June 2022].

126. Velineni A. .

127. Jatti VS, Jatti SV, Patel AP, Jatti VS. A study on effect of fused deposition modeling process parameters on mechanical properties. Int J Sci Technol Res 2019;8:689-93. Available from: www.ijstr.org [Last accessed on 29 June 2022].

128. Mishra S, Acharya E, Banerjee D, Khan M. An experimental investigation of surface roughness of FDM build parts by chemical misting. IOP Conf Ser Mater Sci Eng 2019;653:012043.

129. Jiang J, Xu X, Stringer J. Effect of extrusion temperature on printable threshold overhang in additive manufacturing. Procedia CIRP 2019;81:1376-81.

130. Yunus M, Alsoufi MS. Effect of raster inclinations and part positions on mechanical properties, surface roughness and manufacturing price of printed parts produced by fused deposition method. J Mech Eng Sci 2020;14:7416-23.

131. Sammaiah P, Rushmamanisha K, Praveenadevi N, Rajasri Reddy I. The influence of process parameters on the surface roughness of the 3D printed part in fdm process. IOP Conf Ser Mater Sci Eng 2020;981:042021.

132. Sumalatha M, Malleswara Rao JN, Supraja Reddy B. Optimization of process parameters in 3D printing-fused deposition modeling using taguchi method. IOP Conf Ser Mater Sci Eng 2021;1112:012009.

133. Rayegani F, Onwubolu GC. Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE). Int J Adv Manuf Technol 2014;73:509-19.

134. Shubham P, Sikidar A, Chand T. The influence of layer thickness on mechanical properties of the 3D printed ABS polymer by fused deposition modeling. Key Eng Mater 2016;706:63-7.

135. Chacón J, Caminero M, García-plaza E, Núñez P. Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Mater Des 2017;124:143-57.

136. Kuznetsov VE, Solonin AN, Urzhumtsev OD, Schilling R, Tavitov AG. Strength of PLA components fabricated with fused deposition technology using a desktop 3D printer as a function of geometrical parameters of the process. Polymers (Basel) 2018;10:313.

137. Benwood C, Anstey A, Andrzejewski J, Misra M, Mohanty AK. Improving the impact strength and heat resistance of 3D printed models: structure, property, and processing correlationships during fused deposition modeling (FDM) of poly(lactic acid). ACS Omega 2018;3:4400-11.

138. Spoerk M, Gonzalez-gutierrez J, Sapkota J, Schuschnigg S, Holzer C. Effect of the printing bed temperature on the adhesion of parts produced by fused filament fabrication. Plast Rubber Compos 2017;47:17-24.

139. Ding S, Zou B, Wang P, Ding H. Effects of nozzle temperature and building orientation on mechanical properties and microstructure of PEEK and PEI printed by 3D-FDM. Polym Test 2019;78:105948.

140. Khabia S, Jain KK. Influence of change in layer thickness on mechanical properties of components 3D printed on Zortrax M 200 FDM printer with Z-ABS filament material & Accucraft i250+ FDM printer with low cost ABS filament material. Mater Today Proc 2020;26:1315-22.

141. Nayak P, Kumar Sahu A, Sankar Mahapatra S. Effect of process parameters on the mechanical behavior of FDM and DMLS build parts. Mater Today Proce 2020;22:1443-51.

142. Zhao Y, Zhao K, Li Y, Chen F. Mechanical characterization of biocompatible PEEK by FDM. J Manuf Proc 2020;56:28-42.

143. Vălean C, Marșavina L, Mărghitaș M, Linul E, Razavi J, Berto F. Effect of manufacturing parameters on tensile properties of FDM printed specimens. Procedia Struct Integr 2020;26:313-20.

144. Yadav DK, Srivastava R, Dev S. Design & fabrication of ABS part by FDM for automobile application. Mater Today Proc 2020;26:2089-93.

145. Ouballouch A, alaiji RE, Ettaqi S, Bouayad A, Sallaou M, Lasri L. Evaluation of dimensional accuracy and mechanical behavior of 3D printed reinforced polyamide parts. Procedia Struct Integr 2019;19:433-41.

146. Azhikannickal E, Uhrin A. Dimensional stability of 3D printed parts: effects of process parameters. Ohio J Sci 2019;119:9.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/