REFERENCES
1. Niemeyer CM, Ceyhan B, Hazarika P. Oligofunctional DNA-gold nanoparticle conjugates. Angew Chem Int Ed Engl 2003;42:5766-70.
2. Erkelenz M, Kuo CH, Niemeyer CM. DNA-mediated assembly of cytochrome P450 BM3 subdomains. J Am Chem Soc 2011;133:16111-8.
3. Zhou C, Duan X, Liu N. DNA-nanotechnology-enabled chiral plasmonics: from static to dynamic. Acc Chem Res 2017;50:2906-14.
4. Stephanopoulos N. Hybrid nanostructures from the self-assembly of proteins and DNA. Chem 2020;6:364-405.
5. Hu Y. Self-assembly of DNA molecules: towards DNA nanorobots for biomedical applications. Cyborg and Bionic Systems 2021;2021:1-3.
6. Freeman R, Stephanopoulos N, Álvarez Z, et al. Instructing cells with programmable peptide DNA hybrids. Nat Commun 2017;8:15982.
8. Roh YH, Ruiz RC, Peng S, Lee JB, Luo D. Engineering DNA-based functional materials. Chem Soc Rev 2011;40:5730-44.
9. Veneziano R, Ratanalert S, Zhang K, et al. Designer nanoscale DNA assemblies programmed from the top down. Science 2016;352:1534.
10. Stafforst T, Hilvert D. Photolyase-like repair of psoralen-crosslinked nucleic acids. Angew Chem Int Ed Engl 2011;50:9483-6.
11. Rajendran A, Endo M, Katsuda Y, Hidaka K, Sugiyama H. Photo-cross-linking-assisted thermal stability of DNA origami structures and its application for higher-temperature self-assembly. J Am Chem Soc 2011;133:14488-91.
12. Kosuri S, Church GM. Large-scale de novo DNA synthesis: technologies and applications. Nat Methods 2014;11:499-507.
13. Praetorius F, Kick B, Behler KL, Honemann MN, Weuster-Botz D, Dietz H. Biotechnological mass production of DNA origami. Nature 2017;552:84-7.
15. Hu Y, Niemeyer CM. From DNA nanotechnology to material systems engineering. Adv Mater 2019;31:e1806294.
16. Han J, Guo Y, Wang H, Zhang K, Yang D. Sustainable bioplastic made from biomass DNA and ionomers. J Am Chem Soc 2021;143:19486-97.
19. Liu Y, Ke Y, Yan H. Self-assembly of symmetric finite-size DNA nanoarrays. J Am Chem Soc 2005;127:17140-1.
21. Li F, Tang J, Geng J, Luo D, Yang D. Polymeric DNA hydrogel: design, synthesis and applications. Prog Polym Sci 2019;98:101163.
22. Shahbazi M, Bauleth-ramos T, Santos HA. DNA hydrogel assemblies: bridging synthesis principles to biomedical applications. Adv Therap 2018;1:1800042.
23. Li J, Mo L, Lu CH, Fu T, Yang HH, Tan W. Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications. Chem Soc Rev 2016;45:1410-31.
24. Wang D, Hu Y, Liu P, Luo D. Bioresponsive DNA hydrogels: beyond the conventional stimuli responsiveness. Acc Chem Res 2017;50:733-9.
25. Kahn JS, Hu Y, Willner I. Stimuli-responsive DNA-based hydrogels: from basic principles to applications. Acc Chem Res 2017;50:680-90.
26. Shao Y, Jia H, Cao T, Liu D. Supramolecular hydrogels based on DNA self-assembly. Acc Chem Res 2017;50:659-68.
27. Um SH, Lee JB, Park N, Kwon SY, Umbach CC, Luo D. Enzyme-catalysed assembly of DNA hydrogel. Nat Mater 2006;5:797-801.
28. Xing Y, Cheng E, Yang Y, et al. Self-assembled DNA hydrogels with designable thermal and enzymatic responsiveness. Adv Mater 2011;23:1117-21.
29. Cheng E, Xing Y, Chen P, et al. A pH-triggered, fast-responding DNA hydrogel. Angew Chem Int Ed Engl 2009;48:7660-3.
30. Hartman MR, Yang D, Tran TN, et al. Thermostable branched DNA nanostructures as modular primers for polymerase chain reaction. Angew Chem Int Ed Engl 2013;52:8699-702.
31. Lee JB, Peng S, Yang D, et al. A mechanical metamaterial made from a DNA hydrogel. Nat Nanotechnol 2012;7:816-20.
32. Nagahara S, Matsuda T. Hydrogel formation via hybridization of oligonucleotides derivatized in water-soluble vinyl polymers. Polymer Gels and Networks 1996;4:111-27.
33. Peng L, You M, Yuan Q, et al. Macroscopic volume change of dynamic hydrogels induced by reversible DNA hybridization. J Am Chem Soc 2012;134:12302-7.
34. Li J, Pu K. Semiconducting polymer nanomaterials as near-infrared photoactivatable protherapeutics for cancer. Acc Chem Res 2020;53:752-62.
35. Li J, Duan H, Pu K. Nanotransducers for near-infrared photoregulation in biomedicine. Adv Mater 2019;31:e1901607.
36. Guo W, Lu CH, Orbach R, et al. pH-stimulated DNA hydrogels exhibiting shape-memory properties. Adv Mater 2015;27:73-8.
37. Lu CH, Qi XJ, Orbach R, et al. Switchable catalytic acrylamide hydrogels cross-linked by hemin/G-quadruplexes. Nano Lett 2013;13:1298-302.
38. Yang H, Liu H, Kang H, Tan W. Engineering target-responsive hydrogels based on aptamer-target interactions. J Am Chem Soc 2008;130:6320-1.
39. Battig MR, Soontornworajit B, Wang Y. Programmable release of multiple protein drugs from aptamer-functionalized hydrogels via nucleic acid hybridization. J Am Chem Soc 2012;134:12410-3.
40. Soontornworajit B, Zhou J, Shaw MT, Fan TH, Wang Y. Hydrogel functionalization with DNA aptamers for sustained PDGF-BB release. Chem Commun (Camb) 2010;46:1857-9.
41. Lai J, Li S, Shi X, et al. Displacement and hybridization reactions in aptamer-functionalized hydrogels for biomimetic protein release and signal transduction. Chem Sci 2017;8:7306-11.
42. Zhang Z, Chen N, Li S, Battig MR, Wang Y. Programmable hydrogels for controlled cell catch and release using hybridized aptamers and complementary sequences. J Am Chem Soc 2012;134:15716-9.
43. Li S, Gaddes ER, Chen N, Wang Y. Molecular encryption and reconfiguration for remodeling of dynamic hydrogels. Angew Chem Int Ed Engl 2015;54:5957-61.
44. Huang Y, Ma Y, Chen Y, et al. Target-responsive DNAzyme cross-linked hydrogel for visual quantitative detection of lead. Anal Chem 2014;86:11434-9.
45. Dave N, Chan MY, Huang PJ, Smith BD, Liu J. Regenerable DNA-functionalized hydrogels for ultrasensitive, instrument-free mercury(II) detection and removal in water. J Am Chem Soc 2010;132:12668-73.
47. Song J, Hwang S, Im K, et al. Light-responsible DNA hydrogel-gold nanoparticle assembly for synergistic cancer therapy. J Mater Chem B 2015;3:1537-43.
48. Liao WC, Lilienthal S, Kahn JS, et al. pH- and ligand-induced release of loads from DNA-acrylamide hydrogel microcapsules. Chem Sci 2017;8:3362-73.
49. Soontornworajit B, Zhou J, Zhang Z, Wang Y. Aptamer-functionalized in situ injectable hydrogel for controlled protein release. Biomacromolecules 2010;11:2724-30.
50. Soontornworajit B, Zhou J, Snipes MP, Battig MR, Wang Y. Affinity hydrogels for controlled protein release using nucleic acid aptamers and complementary oligonucleotides. Biomaterials 2011;32:6839-49.
51. Stejskalová A, Oliva N, England FJ, Almquist BD. Biologically inspired, cell-selective release of aptamer-trapped growth factors by traction forces. Adv Mater 2019;31:e1806380.
52. Zhang Z, Liu C, Yang C, et al. Aptamer-patterned hydrogel films for spatiotemporally programmable capture and release of multiple proteins. ACS Appl Mater Interfaces 2018;10:8546-54.
53. Wang Z, Xia J, Cai F, et al. Aptamer-functionalized hydrogel as effective anti-cancer drugs delivery agents. Colloids Surf B Biointerfaces 2015;134:40-6.
54. Ma Y, Liu H, Mou Q, Yan D, Zhu X, Zhang C. Floxuridine-containing nucleic acid nanogels for anticancer drug delivery. Nanoscale 2018;10:8367-71.
55. Zhu Z, Guan Z, Jia S, et al. Au@Pt nanoparticle encapsulated target-responsive hydrogel with volumetric bar-chart chip readout for quantitative point-of-care testing. Angew Chem Int Ed Engl 2014;53:12503-7.
56. Wei X, Tian T, Jia S, et al. Microfluidic distance readout sweet hydrogel integrated paper-based analytical device (μDiSH-PAD) for visual quantitative point-of-care testing. Anal Chem 2016;88:2345-52.
57. Wang C, He K, Li J, Chen X. Conformal electrodes for on-skin digitalization. SmartMat 2021;2:252-62.
58. Jonášová EP, Stokke BT. Bioresponsive DNA-co-polymer hydrogels for fabrication of sensors. Curr Opin Colloid Interface Sci 2016;26:1-8.
59. Mao Y, Li J, Yan J, et al. A portable visual detection method based on a target-responsive DNA hydrogel and color change of gold nanorods. Chem Commun (Camb) 2017;53:6375-8.
60. Lin H, Zou Y, Huang Y, et al. DNAzyme crosslinked hydrogel: a new platform for visual detection of metal ions. Chem Commun (Camb) 2011;47:9312-4.
61. Bai W, Gariano NA, Spivak DA. Macromolecular amplification of binding response in superaptamer hydrogels. J Am Chem Soc 2013;135:6977-84.
62. Bai W, Spivak DA. A double-imprinted diffraction-grating sensor based on a virus-responsive super-aptamer hydrogel derived from an impure extract. Angew Chem Int Ed Engl 2014;53:2095-8.
63. Ma Y, Mao Y, An Y, et al. Target-responsive DNA hydrogel for non-enzymatic and visual detection of glucose. Analyst 2018;143:1679-84.
64. Zhu Z, Wu C, Liu H, et al. An aptamer cross-linked hydrogel as a colorimetric platform for visual detection. Angew Chem Int Ed Engl 2010;49:1052-6.
65. Liu S, Su W, Li Y, Zhang L, Ding X. Manufacturing of an electrochemical biosensing platform based on hybrid DNA hydrogel: taking lung cancer-specific miR-21 as an example. Biosens Bioelectron 2018;103:1-5.
66. Mao X, Chen G, Wang Z, Zhang Y, Zhu X, Li G. Surface-immobilized and self-shaped DNA hydrogels and their application in biosensing. Chem Sci 2018;9:811-8.
67. Zhong R, Tang Q, Wang S, et al. Self-assembly of enzyme-like nanofibrous G-molecular hydrogel for printed flexible electrochemical sensors. Adv Mater 2018;30:e1706887.
68. Shao Y, Sun ZY, Wang Y, Zhang BD, Liu D, Li YM. Designable immune therapeutical vaccine system based on DNA supramolecular hydrogels. ACS Appl Mater Interfaces 2018;10:9310-4.
69. Yao C, Tang H, Wu W, et al. Double rolling circle amplification generates physically cross-linked DNA network for stem cell fishing. J Am Chem Soc 2020;142:3422-9.
70. Yao C, Zhu C, Tang J, Ou J, Zhang R, Yang D. T lymphocyte-captured DNA network for localized immunotherapy. J Am Chem Soc 2021;143:19330-40.
71. Hu Y, Domínguez CM, Bauer J, et al. Carbon-nanotube reinforcement of DNA-silica nanocomposites yields programmable and cell-instructive biocoatings. Nat Commun 2019;10:5522.
72. Hu Y, Niemeyer CM. Designer DNA-silica/carbon nanotube nanocomposites for traceable and targeted drug delivery. J Mater Chem B 2020;8:2250-5.
73. Hu Y, Rehnlund D, Klein E, Gescher J, Niemeyer CM. Cultivation of exoelectrogenic bacteria in conductive DNA nanocomposite hydrogels yields a programmable biohybrid materials system. ACS Appl Mater Interfaces 2020;12:14806-13.
74. Hu Y, Domínguez CM, Christ S, Niemeyer CM. Postsynthetic functionalization of DNA-nanocomposites with proteins yields bioinstructive matrices for cell culture applications. Angew Chem Int Ed Engl 2020;59:19016-20.
75. Hu Y, Grösche M, Sheshachala S, et al. Bottom-up assembly of DNA-silica nanocomposites into micrometer-sized hollow spheres. Angew Chem Int Ed Engl 2019;58:17269-72.
76. Tang J, Ou J, Zhu C, Yao C, Yang D. Flash synthesis of DNA hydrogel via supramacromolecular assembly of DNA chains and upconversion nanoparticles for cell engineering. Adv Funct Materials ; doi: 10.1002/adfm.202107267.
77. Yao C, Tang J, Zhu C, et al. A signal processor made from DNA assembly and upconversion nanoparticle for pharmacokinetic study. Nano Today 2022;42:101352.
78. Creusen G, Akintayo CO, Schumann K, Walther A. Scalable one-pot-liquid-phase oligonucleotide synthesis for model network hydrogels. J Am Chem Soc 2020;142:16610-21.