REFERENCES
1. Schneider FRN, Ohlmann ST, Podsiadlowski P, et al. Stellar mergers as the origin of magnetic massive stars. Nature 2019;574:211-4.
2. Hilger A, Manke I, Kardjilov N, Osenberg M, Markötter H, Banhart J. Tensorial neutron tomography of three-dimensional magnetic vector fields in bulk materials. Nat Commun 2018;9:4023.
3. Ma K, Liu J. Liquid metal cooling in thermal management of computer chips. Front Energy Power Eng China 2007;1:384-402.
4. Jiménez-Martínez R, Kennedy DJ, Rosenbluh M, et al. Optical hyperpolarization and NMR detection of 129Xe on a microfluidic chip. Nat Commun 2014;5:3908.
5. Lin F, Zhu Z, Zhou X, et al. Orientation control of graphene flakes by magnetic field: broad device applications of macroscopically aligned graphene. Adv Mater 2017;29:1604453.
6. Chi Z, Yi Y, Wang Y, et al. Adaptive cylindrical wireless metasurfaces in clinical magnetic resonance imaging. Adv Mater 2021;33:e2102469.
7. Espinosa A, Reguera J, Curcio A, et al. Janus magnetic-plasmonic nanoparticles for magnetically guided and thermally activated cancer therapy. Small 2020;16:e1904960.
8. Liu JF, Lan Z, Ferrari C, et al. Use of oppositely polarized external magnets to improve the accumulation and penetration of magnetic nanocarriers into solid tumors. ACS Nano 2020;14:142-52.
9. Xu Y, Yang G, Xia H, Zou G, Zhang Q, Gao J. Enantioselective synthesis of helical polydiacetylene by application of linearly polarized light and magnetic field. Nat Commun 2014;5:5050.
11. Blondeau M, Guyodo Y, Guyot F, et al. Magnetic-field induced rotation of magnetosome chains in silicified magnetotactic bacteria. Sci Rep 2018;8:7699.
12. Li Q, Chen H, Feng X, et al. Nanoparticle-regulated semiartificial magnetotactic bacteria with tunable magnetic moment and magnetic sensitivity. Small 2019;15:e1900427.
13. Shafi KVPM, Gedanken A, Prozorov R. Surfactant-assisted self-organization of cobalt nanoparticles in a magnetic fluid. Adv Mater 1998;10:590-3.
14. Guo R, Sun X, Yuan B, Wang H, Liu J. Magnetic liquid metal (Fe-EGaIn) based multifunctional electronics for remote self-healing materials, degradable electronics, and thermal transfer printing. Adv Sci (Weinh) 2019;6:1901478.
15. Zhang J, Guo R, Liu J. Self-propelled liquid metal motors steered by a magnetic or electrical field for drug delivery. J Mater Chem B 2016;4:5349-57.
16. Morris DJ, Tennant DA, Grigera SA, et al. Dirac strings and magnetic monopoles in the spin ice Dy2Ti2O7. Science 2009;326:411-4.
17. Bramwell ST, Giblin SR, Calder S, Aldus R, Prabhakaran D, Fennell T. Measurement of the charge and current of magnetic monopoles in spin ice. Nature 2009;461:956-9.
19. Gibney E. Quantum cloud simulates magnetic monopole. Nature 2014; doi: 10.1038/nature.2014.14612.
20. Wang MF, Jin MJ, Jin XJ, Zuo SG. Modeling of movement of liquid metal droplets driven by an electric field. Phys Chem Chem Phys 2017;19:18505-13.
21. Handschuh-Wang S, Chen Y, Zhu L, Gan T, Zhou X. Electric actuation of liquid metal droplets in acidified aqueous electrolyte. Langmuir 2019;35:372-81.
22. Handschuh-Wang S, Gan T, Wang T, Stadler FJ, Zhou X. Surface tension of the oxide skin of gallium-based liquid metals. Langmuir 2021;37:9017-25.
23. Tang S, Tabor C, Kalantar-zadeh K, Dickey MD. Gallium liquid metal: the Devil's elixir. Annu Rev Mater Res 2021;51:381-408.
24. Fu J, Liu T, Cui Y, Liu J. Interfacial engineering of room temperature liquid metals. Adv Mater Interfaces 2021;8:2001936.
25. Handschuh-wang S, Stadler FJ, Zhou X. Critical review on the physical properties of gallium-based liquid metals and selected pathways for their alteration. J Phys Chem C 2021;125:20113-42.
27. Liu J, Sheng L, He ZZ. Liquid metal soft machines: principles and applications. Singapore: Springer; 2019.
28. Yang J, Yang Y, He Z, Chen B, Liu J. A personal desktop liquid-metal printer as a pervasive electronics manufacturing tool for society in the near future. Engineering 2015;1:506-12.
29. Sheng L, Zhang J, Liu J. Diverse transformations of liquid metals between different morphologies. Adv Mater 2014;26:6036-42.
30. Zhang J, Yao Y, Sheng L, Liu J. Self-fueled biomimetic liquid metal mollusk. Adv Mater 2015;27:2648-55.
31. Wang H, Chen S, Li H, et al. A liquid gripper based on phase transitional metallic ferrofluid. Adv Funct Mater 2021;31:2100274.
32. Zhang R, Ye Z, Gao M, et al. Liquid metal electrode-enabled flexible microdroplet sensor. Lab Chip 2020;20:496-504.
33. Guo R, Sheng L, Gong H, Liu J. Liquid metal spiral coil enabled soft electromagnetic actuator. Sci China Technol Sci 2018;61:516-21.
34. Tang SY, Khoshmanesh K, Sivan V, et al. Liquid metal enabled pump. Proc Natl Acad Sci U S A 2014;111:3304-9.
35. Yang X, Tan S, Yuan B, Liu J. Alternating electric field actuated oscillating behavior of liquid metal and its application. Sci China Technol Sci 2016;59:597-603.
36. Yuan B, Tan S, Zhou Y, Liu J. Self-powered macroscopic Brownian motion of spontaneously running liquid metal motors. Sci Bull 2015;60:1203-10.
37. Zhang J, Yao Y, Liu J. Autonomous convergence and divergence of the self-powered soft liquid metal vehicles. Sci Bull 2015;60:943-51.
38. Tan S, Yuan B, Liu J. Electrical method to control the running direction and speed of self-powered tiny liquid metal motors. Proc R Soc A 2015;471:20150297.
39. Sheng L, He Z, Yao Y, Liu J. Transient state machine enabled from the colliding and coalescence of a swarm of autonomously running liquid metal motors. Small 2015;11:5253-61.
40. Nurge MA, Youngquist RC, Starr SO. Drag and lift forces between a rotating conductive sphere and a cylindrical magnet. Am J Phys 2018;86:443-52.
41. Tan S, Gui H, Yuan B, Liu J. Magnetic trap effect to restrict motion of self-powered tiny liquid metal motors. Appl Phys Lett 2015;107:071904.
42. Tan SC, Yang XH, Gui H, et al. Galvanic corrosion couple-induced Marangoni flow of liquid metal. Soft Matter 2017;13:2309-14.
43. Zhang J, Sheng L, Liu J. Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects. Sci Rep 2014;4:7116.
44. Redzic DV. Electromagnetostatic charges and fields in a rotating conducting sphere. Prog Electromagn Res 2010;110:383-401.
45. Jia XM. Whole-space analysis of the magnetic field of rotating sphere with charged (in Chinese). College Physics 2010; 29:20-21.
46. Jin SW, Park J, Hong SY, et al. Stretchable loudspeaker using liquid metal microchannel. Sci Rep 2015;5:11695.
47. Milde P, Köhler D, Seidel J, et al. Unwinding of a skyrmion lattice by magnetic monopoles. Science 2013;340:1076-80.
48. Dirac PAM. Quantised singularities in the electromagnetic field. Proc R Soc Lond A 1931;133:60-72.
50. Polyakov AM. Particle spectrum in quantum field theory. 30 Years of the Landau Institute - Selected Papers. WORLD SCIENTIFIC; 1996. p. 540-1.
52. Wu TT, Yang CN. Concept of nonintegrable phase factors and global formulation of gauge fields. Phys Rev D 1975;12:3845-57.
53. Abrikosov AA Jr. Dirac operator on the Riemann sphere. arXiv e-prints 2002;arXiv:hep-th/0212134.
54. Béché A, Van Boxem R, Van Tendeloo G, Verbeeck J. Magnetic monopole field exposed by electrons. Nature Phys 2014;10:26-9.
55. Fang Z, Nagaosa N, Takahashi KS, et al. The anomalous Hall effect and magnetic monopoles in momentum space. Science 2003;302:92-5.
56. Bovo L, Bloxsom JA, Prabhakaran D, Aeppli G, Bramwell ST. Brownian motion and quantum dynamics of magnetic monopoles in spin ice. Nat Commun 2013;4:1535.
59. Pietilä V, Möttönen M. Creation of Dirac monopoles in spinor Bose-Einstein condensates. Phys Rev Lett 2009;103:030401.
60. Ray MW, Ruokokoski E, Kandel S, Möttönen M, Hall DS. Observation of Dirac monopoles in a synthetic magnetic field. Nature 2014;505:657-60.