REFERENCES
1. Zhu M, He T, Lee C. Technologies toward next generation human machine interfaces: From machine learning enhanced tactile sensing to neuromorphic sensory systems. Applied Physics Reviews 2020;7:031305.
2. Dahiya RS, Mittendorfer P, Valle M, Cheng G, Lumelsky VJ. Directions toward effective utilization of tactile skin: a review. IEEE Sensors J 2013;13:4121-38.
3. Wang D, Wang L, Shen G. Nanofiber/nanowires-based flexible and stretchable sensors. J Semicond 2020;41:041605.
4. Takei K, Gao W, Wang C, Javey A. Physical and chemical sensing with electronic skin. Proc IEEE 2019;107:2155-67.
5. Qi D, Zhang K, Tian G, Jiang B, Huang Y. Stretchable electronics based on PDMS substrates. Adv Mater 2021;33:e2003155.
6. Ma Z, Kong D, Pan L, Bao Z. Skin-inspired electronics: emerging semiconductor devices and systems. J Semicond 2020;41:041601.
7. Li J, Bao R, Tao J, Peng Y, Pan C. Recent progress in flexible pressure sensor arrays: from design to applications. J Mater Chem C 2018;6:11878-92.
8. Li D, Yao K, Gao Z, Liu Y, Yu X. Department of Biomedical Engineering. Recent progress of skin-integrated electronics for intelligent sensing. Light: Advanced Manufacturing 2021;2:39-58.
9. Kumar S, Pavelyev V, Tripathi N, et al. Review - recent advances in the development of carbon nanotubes based flexible sensors. J Electrochem Soc 2020;167:047506.
10. Kim JJ, Wang Y, Wang H, Lee S, Yokota T, Someya T. Skin electronics: next-generation device platform for virtual and augmented reality. Adv Funct Mater 2021; doi: 10.1002/adfm.202009602.
11. Jiang C, Cheng X, Nathan A. Flexible ultralow-power sensor interfaces for E-skin. Proc IEEE 2019;107:2084-105.
12. Jeon S, Lim S, Trung TQ, Jung M, Lee N. Flexible multimodal sensors for electronic skin: principle, materials, device, array architecture, and data acquisition method. Proc IEEE 2019;107:2065-83.
13. Heo JS, Hossain MF, Kim I. Challenges in design and fabrication of flexible/stretchable carbon- and textile-based wearable sensors for health monitoring: a critical review. Sensors (Basel) 2020;20:3927.
14. Cheng G, Dean-leon E, Bergner F, Rogelio Guadarrama Olvera J, Leboutet Q, Mittendorfer P. A comprehensive realization of robot skin: sensors, sensing, control, and applications. Proc IEEE 2019;107:2034-51.
15. Chen W, Yan X. Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: A review. J Mater Sci Mater Med 2020;43:175-88.
17. Miao P, Wang J, Zhang C, Sun M, Cheng S, Liu H. Graphene nanostructure-based tactile sensors for electronic skin applications. Nanomicro Lett 2019;11:71.
18. Wan Y, Wang Y, Guo CF. Recent progresses on flexible tactile sensors. Materials Today Physics 2017;1:61-73.
19. Huang S, Liu Y, Zhao Y, Ren Z, Guo CF. Flexible electronics: stretchable electrodes and their future. Adv Funct Mater 2019;29:1805924.
20. Lee S, Franklin S, Hassani FA, et al. Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 2020;370:966-70.
21. Wang B, Thukral A, Xie Z, et al. Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics. Nat Commun 2020;11:2405.
22. Park Y, Kwon K, Kwak SS, et al. Wireless, skin-interfaced sensors for compression therapy. Sci Adv 2020;6:eabe1655.
23. Chung HU, Rwei AY, Hourlier-Fargette A, et al. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nat Med 2020;26:418-29.
24. Kwak JW, Han M, Xie Z, et al. Wireless sensors for continuous, multimodal measurements at the skin interface with lower limb prostheses. Sci Transl Med 2020;12:eabc4327.
25. Sun T, Tasnim F, McIntosh RT, et al. Decoding of facial strains via conformable piezoelectric interfaces. Nat Biomed Eng 2020;4:954-72.
26. Tai LC, Ahn CH, Nyein HYY, et al. Nicotine monitoring with a wearable sweat band. ACS Sens 2020;5:1831-7.
27. Lin Y, Bariya M, Javey A. Wearable Biosensors for Body Computing. Adv Funct Mater 2020; doi: 10.1002/adfm.202008087.
28. Liu Q, Liu Y, Wu F, et al. Highly sensitive and wearable In2O3 nanoribbon transistor biosensors with integrated on-chip gate for glucose monitoring in body fluids. ACS Nano 2018;12:1170-8.
29. Xie C, Zhang M, Du W, et al. Sensing-range-tunable pressure sensors realized by self-patterned-spacer design and vertical CNT arrays embedded in PDMS. RSC Adv 2020;10:33558-65.
30. Park J, Lee Y, Hong J, et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 2014;8:4689-97.
31. Bae GY, Pak SW, Kim D, et al. Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array. Adv Mater 2016;28:5300-6.
32. Won SM, Wang H, Kim BH, et al. Multimodal sensing with a three-dimensional piezoresistive structure. ACS Nano 2019;13:10972-9.
33. Zhu P, Wang Y, Wang Y, Mao H, Zhang Q, Deng Y. Flexible 3D architectured piezo/thermoelectric bimodal tactile sensor array for E-skin application. Adv Energy Mater 2020;10:2001945.
34. Sun X, Sun J, Li T, et al. Flexible tactile electronic skin sensor with 3D force detection based on porous CNTs/PDMS nanocomposites. Nanomicro Lett 2019;11:57.
35. Zhao J, Luo J, Zhou Z, et al. Novel multi-walled carbon nanotubes-embedded laser-induced graphene in crosslinked architecture for highly responsive asymmetric pressure sensor. Sensors and Actuators A: Physical 2021;323:112658.
36. Wang Z, Guan X, Huang H, Wang H, Lin W, Peng Z. Full 3D printing of stretchable piezoresistive sensor with hierarchical porosity and multimodulus architecture. Adv Funct Mater 2019;29:1807569.
37. Zhao J, He C, Yang R, et al. Ultra-sensitive strain sensors based on piezoresistive nanographene films. Appl Phys Lett 2012;101:063112.
38. Qiu L, Bulut Coskun M, Tang Y, et al. Ultrafast dynamic piezoresistive response of graphene-based cellular elastomers. Adv Mater 2016;28:194-200.
39. Park YJ, Sharma BK, Shinde SM, et al. All MoS2-based large area, skin-attachable active-matrix tactile sensor. ACS Nano 2019;13:3023-30.
40. Park J, Lee Y, Hong J, et al. Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures. ACS Nano 2014;8:12020-9.
41. Pan L, Chortos A, Yu G, et al. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat Commun 2014;5:3002.
42. Huang Y, Liu Y, Ma C, et al. Sensitive pressure sensors based on conductive microstructured air-gap gates and two-dimensional semiconductor transistors. Nat Electron 2020;3:59-69.
43. Liu Q, Liu Z, Li C, et al. Highly transparent and flexible iontronic pressure sensors based on an opaque to transparent transition. Adv Sci (Weinh) 2020;7:2000348.
44. Bai N, Wang L, Wang Q, et al. Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity. Nat Commun 2020;11:209.
45. Yang X, Chen S, Shi Y, Fu Z, Zhou B. A flexible highly sensitive capacitive pressure sensor. Sensors and Actuators A: Physical 2021;324:112629.
46. Fu M, Zhang J, Jin Y, Zhao Y, Huang S, Guo CF. A highly sensitive, reliable, and high-temperature-resistant flexible pressure sensor based on ceramic nanofibers. Adv Sci (Weinh) 2020;7:2000258.
47. Qiu Z, Wan Y, Zhou W, et al. Ionic skin with biomimetic dielectric layer templated from calathea zebrine leaf. Adv Funct Mater 2018;28:1802343.
48. Sarwar MS, Dobashi Y, Preston C, Wyss JK, Mirabbasi S, Madden JD. Bend, stretch, and touch: locating a finger on an actively deformed transparent sensor array. Sci Adv 2017;3:e1602200.
49. Tee BC, Chortos A, Dunn RR, Schwartz G, Eason E, Bao Z. Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronics. Adv Funct Mater 2014;24:5427-34.
50. Navaraj W, Dahiya R. Fingerprint-enhanced capacitive-piezoelectric flexible sensing skin to discriminate static and dynamic tactile stimuli. Advanced Intelligent Systems 2019;1:1900051.
51. Mu C, Song Y, Huang W, et al. Flexible normal-tangential force sensor with opposite resistance responding for highly sensitive artificial skin. Adv Funct Mater 2018;28:1707503.
52. Dagdeviren C, Su Y, Joe P, et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat Commun 2014;5:4496.
53. Park DY, Joe DJ, Kim DH, et al. Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Adv Mater 2017;29:1702308.
54. Dagdeviren C, Yang BD, Su Y, et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc Natl Acad Sci U S A 2014;111:1927-32.
55. Dagdeviren C, Javid F, Joe P, et al. Flexible piezoelectric devices for gastrointestinal motility sensing. Nat Biomed Eng 2017;1:807-17.
56. Nguyen TD, Deshmukh N, Nagarah JM, et al. Piezoelectric nanoribbons for monitoring cellular deformations. Nat Nanotechnol 2012;7:587-93.
57. Deng W, Yang T, Jin L, et al. Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures. Nano Energy 2019;55:516-25.
58. Yang Y, Pan H, Xie G, et al. Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring. Sensors and Actuators A: Physical 2020;301:111789.
59. Djohan N, Harsono B, Liman J, Hardhienata H, Husein I. The effect of indium oxide (In2O3) dopant on the electrical properties of LiTaO3 thin film-based sensor. Ferroelectrics 2020;568:55-61.
60. Wang M, Shi H, Ma T, et al. High-frequency vibration analysis of LiTaO3 piezoelectric plates excited by lateral electric fields produced by surface electrodes under viscous liquid loadings for sensing. Smart Mater Struct 2020;29:045004.
61. Chen J, Liu H, Wang W, et al. High durable, biocompatible, and flexible piezoelectric pulse sensor using single-crystalline III-N thin film. Adv Funct Mater 2019;29:1903162.
62. Kim N, Chang Y, Chen J, et al. Piezoelectric pressure sensor based on flexible gallium nitride thin film for harsh-environment and high-temperature applications. Sensors and Actuators A: Physical 2020;305:111940.
63. Cheng S, Han S, Cao Z, Xu C, Fang X, Wang X. Wearable and ultrasensitive strain sensor based on high-quality GaN pn junction microwire arrays. Small 2020;16:e1907461.
64. Kar E, Bose N, Dutta B, Mukherjee N, Mukherjee S. Ultraviolet- and microwave-protecting, self-cleaning e-skin for efficient energy harvesting and tactile mechanosensing. ACS Appl Mater Interfaces 2019;11:17501-12.
65. Su Y, Chen C, Pan H, et al. Muscle fibers inspired high-performance piezoelectric textiles for wearable physiological monitoring. Adv Funct Mater 2021;31:2010962.
66. Lu K, Huang W, Guo J, et al. Ultra-sensitive strain sensor based on flexible poly(vinylidene fluoride) piezoelectric film. Nanoscale Res Lett 2018;13:83.
69. Tian J, Chen X, Wang ZL. Environmental energy harvesting based on triboelectric nanogenerators. Nanotechnology 2020;31:242001.
70. Wang X, Zhang Y, Zhang X, et al. A highly stretchable transparent self-Powered triboelectric tactile sensor with metallized nanofibers for wearable electronics. Adv Mater 2018;30:e1706738.
71. Wang X, Zhang H, Dong L, et al. Self-powered high-resolution and pressure-sensitive triboelectric sensor matrix for real-time tactile mapping. Adv Mater 2016;28:2896-903.
72. Sun H, Zhao Y, Wang C, et al. Ultra-stretchable, durable and conductive hydrogel with hybrid double network as high performance strain sensor and stretchable triboelectric nanogenerator. Nano Energy 2020;76:105035.
73. Chun S, Son W, Kim H, Lim SK, Pang C, Choi C. Self-powered pressure- and vibration-sensitive tactile sensors for learning technique-based neural finger skin. Nano Lett 2019;19:3305-12.
74. Mannsfeld SC, Tee BC, Stoltenberg RM, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater 2010;9:859-64.
75. Zhang S, Wen L, Wang H, Zhu K, Zhang M. Vertical CNT-Ecoflex nanofins for highly linear broad-range-detection wearable strain sensors. J Mater Chem C 2018;6:5132-9.
76. Lou Z, Chen S, Wang L, Jiang K, Shen G. An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy 2016;23:7-14.
77. Pan F, Chen S, Li Y, et al. 3D graphene films enable simultaneously high sensitivity and large stretchability for strain sensors. Adv Funct Mater 2018;28:1803221.
78. Boutry CM, Kaizawa Y, Schroeder BC, et al. A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat Electron 2018;1:314-21.
79. Chen S, Song Y, Ding D, Ling Z, Xu F. Flexible and anisotropic strain sensor based on carbonized crepe paper with aligned cellulose fibers. Adv Funct Mater 2018;28:1802547.
80. Shi C, Zou Z, Lei Z, Zhu P, Zhang W, Xiao J. Heterogeneous integration of rigid, soft, and liquid materials for self-healable, recyclable, and reconfigurable wearable electronics. Sci Adv 2020;6:eabd0202.
81. Yu X, Xie Z, Yu Y, et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 2019;575:473-9.
82. Xu F, Li X, Shi Y, et al. Recent developments for flexible pressure sensors: a review. Micromachines (Basel) 2018;9:580.
83. Wang C, Xia K, Wang H, Liang X, Yin Z, Zhang Y. Advanced carbon for flexible and wearable electronics. Adv Mater 2019;31:e1801072.
84. Kang M, Kim J, Jang B, Chae Y, Kim JH, Ahn JH. Graphene-based three-dimensional capacitive touch sensor for wearable electronics. ACS Nano 2017;11:7950-7.
85. Zeng X, Wang Z, Zhang H, et al. Tunable, ultrasensitive, and flexible pressure sensors based on wrinkled microstructures for electronic skins. ACS Appl Mater Interfaces 2019;11:21218-26.
86. Gong S, Schwalb W, Wang Y, et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun 2014;5:3132.
87. Liu Y, Zheng H, Zhao L, et al. Electronic skin from high-throughput fabrication of intrinsically stretchable lead zirconate titanate elastomer. Research (Wash D C) 2020;2020:1085417.
88. Qiu Y, Tian Y, Sun S, et al. Bioinspired, multifunctional dual-mode pressure sensors as electronic skin for decoding complex loading processes and human motions. Nano Energy 2020;78:105337.
89. Hwang B, Zabeeb A, Trung TQ, et al. A transparent stretchable sensor for distinguishable detection of touch and pressure by capacitive and piezoresistive signal transduction. NPG Asia Mater 2019:11.
90. Yang Y, Zhao G, Cheng X, Deng H, Fu Q. Stretchable and healable conductive elastomer based on PEDOT:PSS/natural rubber for self-powered temperature and strain sensing. ACS Appl Mater Interfaces 2021;13:14599-611.
91. You I, Mackanic DG, Matsuhisa N, et al. Artificial multimodal receptors based on ion relaxation dynamics. Science 2020;370:961-5.
92. Wang J, Jiang J, Zhang C, et al. Energy-efficient, fully flexible, high-performance tactile sensor based on piezotronic effect: Piezoelectric signal amplified with organic field-effect transistors. Nano Energy 2020;76:105050.
93. Oh H, Yi GC, Yip M, Dayeh SA. Scalable tactile sensor arrays on flexible substrates with high spatiotemporal resolution enabling slip and grip for closed-loop robotics. Sci Adv 2020;6:eabd7795.
94. Guo S, Wu K, Li C, et al. Integrated contact lens sensor system based on multifunctional ultrathin MoS2 transistors. Matter 2021;4:969-85.
95. Shi Q, He T, Lee C. More than energy harvesting - combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems. Nano Energy 2019;57:851-71.
96. Zhao J, Bu T, Zhang X, et al. Intrinsically stretchable organic-tribotronic-transistor for tactile sensing. Research (Wash D C) 2020;2020:1398903.
97. Yang GZ, Bellingham J, Dupont PE, et al. The grand challenges of Science Robotics. Sci Robot 2018;3:eaar7650.
98. Kim J, Lee G, Heimgartner R, et al. Reducing the metabolic rate of walking and running with a versatile, portable exosuit. Science 2019;365:668-72.
99. Zhang J, Fiers P, Witte KA, et al. Human-in-the-loop optimization of exoskeleton assistance during walking. Science 2017;356:1280-4.
100. Valle G, Saliji A, Fogle E, Cimolato A, Petrini FM, Raspopovic S. Mechanisms of neuro-robotic prosthesis operation in leg amputees. Sci Adv 2021;7:eabd8354.
101. Li J, Esteban-Fernández de Ávila B, Gao W, Zhang L, Wang J. Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci Robot 2017;2:eaam6431.
102. Miskin MZ, Cortese AJ, Dorsey K, et al. Electronically integrated, mass-manufactured, microscopic robots. Nature 2020;584:557-61.
103. Mishra S, Kim YS, Intarasirisawat J, et al. Soft, wireless periocular wearable electronics for real-time detection of eye vergence in a virtual reality toward mobile eye therapies. Sci Adv 2020;6:eaay1729.
104. Song K, Kim SH, Jin S, et al. Pneumatic actuator and flexible piezoelectric sensor for soft virtual reality glove system. Sci Rep 2019;9:8988.
105. Trung TQ, Lee NE. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv Mater 2016;28:4338-72.
106. Amjadi M, Kyung K, Park I, Sitti M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Funct Mater 2016;26:1678-98.
107. Ha M, Lim S, Ko H. Wearable and flexible sensors for user-interactive health-monitoring devices. J Mater Chem B 2018;6:4043-64.
108. Zheng YL, Ding XR, Poon CC, et al. Unobtrusive sensing and wearable devices for health informatics. IEEE Trans Biomed Eng 2014;61:1538-54.
109. Shin J, Yan Y, Bai W, et al. Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes. Nat Biomed Eng 2019;3:37-46.
110. Wang Y, Zhu W, Deng Y, et al. Self-powered wearable pressure sensing system for continuous healthcare monitoring enabled by flexible thin-film thermoelectric generator. Nano Energy 2020;73:104773.
111. Wang C, Li X, Hu H, et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat Biomed Eng 2018;2:687-95.
112. Liu Q, Huang J, Zhang J, et al. Thermal, waterproof, breathable, and antibacterial cloth with a nanoporous structure. ACS Appl Mater Interfaces 2018;10:2026-32.
113. Zhang L, Jiang X, Jiang W, et al. Infrared skin-like active stretchable electronics based on organic-inorganic composite structures for promotion of cutaneous wound healing. Adv Mater Technol 2019;4:1900150.
114. Ni X, Ouyang W, Jeong H, et al. Automated, multiparametric monitoring of respiratory biomarkers and vital signs in clinical and home settings for COVID-19 patients. Proc Natl Acad Sci U S A 2021;118:e2026610118.