REFERENCES
1. Hampson K, Coudeville L, Lembo T, et al; Global Alliance for Rabies Control Partners for Rabies Prevention. Estimating the global burden of endemic canine rabies. PLoS Negl Trop Dis 2015;9:e0003709.
2. Worsley-Tonks KEL, Escobar LE, Biek R, et al. Using host traits to predict reservoir host species of rabies virus. PLoS Negl Trop Dis 2020;14:e0008940.
3. Rabies - Bulletin - Europe. Epidemiology of Rabies. Available from: https://www.who-rabies-bulletin.org/site-page/epidemiology-rabies. [Last accessed on 28 May 2024].
4. Sabeta CT, Janse van Rensburg D, Phahladira B, et al. Rabies of canid biotype in wild dog (Lycaon pictus) and spotted hyaena
5. Faria NR, Suchard MA, Rambaut A, Streicker DG, Lemey P. Simultaneously reconstructing viral cross-species transmission history and identifying the underlying constraints. Philos Trans R Soc Lond B Biol Sci 2013;368:20120196.
6. Viana M, Mancy R, Biek R, et al. Assembling evidence for identifying reservoirs of infection. Trends Ecol Evol 2014;29:270-9.
7. Haydon DT, Cleaveland S, Taylor LH, Laurenson MK. Identifying reservoirs of infection: a conceptual and practical challenge. Emerg Infect Dis 2002;8:1468-73.
8. Lembo T, Hampson K, Kaare MT, et al. The feasibility of canine rabies elimination in Africa: dispelling doubts with data. PLoS Negl Trop Dis 2010;4:e626.
9. Lembo T, Haydon DT, Velasco-Villa A, et al. Molecular epidemiology identifies only a single rabies virus variant circulating in complex carnivore communities of the Serengeti. Proc Biol Sci 2007;274:2123-30.
10. Fisher CR, Streicker DG, Schnell MJ. The spread and evolution of rabies virus: conquering new frontiers. Nat Rev Microbiol 2018;16:241-55.
11. Rose R, Hall M, Redd AD, et al. Phylogenetic methods inconsistently predict the direction of HIV transmission among heterosexual pairs in the HPTN 052 cohort. J Infect Dis 2019;220:1406-13.
12. Mancy R, Rajeev M, Lugelo A, et al. Rabies shows how scale of transmission can enable acute infections to persist at low prevalence. Science 2022;376:512-6.
13. Zinsstag J, Lechenne M, Laager M, et al. Vaccination of dogs in an African city interrupts rabies transmission and reduces human exposure. Sci Transl Med 2017;9:eaaf6984.
14. Bourhy H, Nakouné E, Hall M, et al. Revealing the micro-scale signature of endemic zoonotic disease transmission in an African urban setting. PLoS Pathog 2016;12:e1005525.
15. Campbell K, Gifford RJ, Singer J, et al. Making genomic surveillance deliver: a lineage classification and nomenclature system to inform rabies elimination. PLoS Pathog 2022;18:e1010023.
16. Baum D. Reading a phylogenetic tree: the meaning of monophyletic groups. 2008. Available from: https://www.nature.com/scitable/topicpage/reading-a-phylogenetic-tree-the-meaning-of-41956/. [Last accessed on 28 May 2024].
17. Pybus OG, Rambaut A. Evolutionary analysis of the dynamics of viral infectious disease. Nat Rev Genet 2009;10:540-50.
18. Dellicour S, Troupin C, Jahanbakhsh F, et al. Using phylogeographic approaches to analyse the dispersal history, velocity and direction of viral lineages - Application to rabies virus spread in Iran. Mol Ecol 2019;28:4335-50.
20. Kchouk M, Gibrat JF, Elloumi M. Generations of sequencing technologies: from first to next generation. Biol Med 2017;9:3. Available from: https://www.walshmedicalmedia.com/open-access/generations-of-sequencing-technologies-from-first-to-next-generation-0974-8369-1000395.pdf. [Last accessed on 28 May 2024]
21. Pant GR, Lavenir R, Wong FY, et al. Recent emergence and spread of an Arctic-related phylogenetic lineage of rabies virus in Nepal. PLoS Negl Trop Dis 2013;7:e2560.
22. Wunner WH, Larson JK, Dietzschold B, Smith CL. The molecular biology of rabies viruses. Rev Infect Dis 1988;10:S771-84.
23. Voloch CM, Capellão RT, Mello B, Schrago CG. Analysis of adaptive evolution in Lyssavirus genomes reveals pervasive diversifying selection during species diversification. Viruses 2014;6:4465-78.
24. WHO. Weekly Epidemiological Record, 2018, vol. 93, 20. Available from: https://www.who.int/publications-detail-redirect/WER9320. [Last accessed on 28 May 2024].
25. WHO. WHO expert consultation on rabies. 2005. Available from: https://apps.who.int/iris/bitstream/handle/10665/85346/9789241209823_eng.pdf?sequence=1. [Last accessed on 28 May 2024].
26. WHO. WHO Expert consultation on rabies: WHO TRS N°1012. Available from: https://www.who.int/publications-detail-redirect/WHO-TRS-1012. [Last accessed on 28 May 2024].
27. Nguyen AKT, Vu AH, Nguyen TT, et al. Risk factors and protective immunity against rabies in unvaccinated butchers working at dog slaughterhouses in Northern Vietnam. Am J Trop Med Hyg 2021;105:788-93.
28. Minghui R, Stone M, Semedo MH, Nel L. New global strategic plan to eliminate dog-mediated rabies by 2030. Lancet Glob Health 2018;6:e828-9.
29. Cutts FT, Waldman RJ, Zoffman HM. Surveillance for the expanded programme on immunization. Bull World Health Organ 1993;71:633-9.
30. Thacker SB, Berkelman RL. Public health surveillance in the United States. Epidemiol Rev 1988;10:164-90.
31. Wallace RM, Reses H, Franka R, et al. Establishment of a high canine rabies burden in Haiti through the implementation of a novel surveillance program [corrected]. PLoS Negl Trop Dis 2015;9:e0004245.
32. Talbi C, Lemey P, Suchard MA, et al. Phylodynamics and human-mediated dispersal of a zoonotic virus. PLoS Pathog 2010;6:e1001166.
33. Bedford T, Cobey S, Beerli P, Pascual M. Global migration dynamics underlie evolution and persistence of human influenza A (H3N2). PLoS Pathog 2010;6:e1000918.
34. Lemey P, Rambaut A, Bedford T, et al. Unifying viral genetics and human transportation data to predict the global transmission dynamics of human influenza H3N2. PLoS Pathog 2014;10:e1003932.
35. Quick J, Loman NJ, Duraffour S, et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 2016;530:228-32.
36. Quick J, Grubaugh ND, Pullan ST, et al. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nat Protoc 2017;12:1261-76.
37. Giovanetti M, Pinotti F, Zanluca C, et al. Genomic epidemiology unveils the dynamics and spatial corridor behind the Yellow Fever virus outbreak in Southern Brazil. Sci Adv 2023;9:eadg9204.
38. Faria NR, Kraemer MUG, Hill SC, et al. Genomic and epidemiological monitoring of yellow fever virus transmission potential. Science 2018;361:894-9.
39. Roychoudhury P, Sereewit J, Xie H, et al. Genomic analysis of early monkeypox virus outbreak strains, Washington, USA. Emerg Infect Dis 2023;29:644-6.
40. Kugelman JR, Johnston SC, Mulembakani PM, et al. Genomic variability of monkeypox virus among humans, Democratic Republic of the Congo. Emerg Infect Dis 2014;20:232-9.
41. Forni D, Cagliani R, Molteni C, Clerici M, Sironi M. Monkeypox virus: the changing facets of a zoonotic pathogen. Infect Genet Evol 2022;105:105372.
42. Li Y, Hou J, Sun Z, et al. Monkeypox virus 2022, gene heterogeneity and protein polymorphism. Signal Transduct Target Ther 2023;8:278.
43. Faria NR, Mellan TA, Whittaker C, et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science 2021;372:815-21.
44. Trewby H, Nadin-Davis SA, Real LA, Biek R. Processes underlying rabies virus incursions across US-Canada border as revealed by whole-genome phylogeography. Emerg Infect Dis 2017;23:1454-61.
45. Layan M, Dellicour S, Baele G, Cauchemez S, Bourhy H. Mathematical modelling and phylodynamics for the study of dog rabies dynamics and control: a scoping review. PLoS Negl Trop Dis 2021;15:e0009449.
46. Brunker K, Jaswant G, Thumbi SM, et al. Rapid in-country sequencing of whole virus genomes to inform rabies elimination programmes. Wellcome Open Res 2020;5:3.
47. Okeke IN, Ihekweazu C. The importance of molecular diagnostics for infectious diseases in low-resource settings. Nat Rev Microbiol 2021;19:547-8.
48. Page MJ, Moher D, Bossuyt PM, et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ 2021;372:n160.
49. The R project for statistical computing. Available from: https://www.r-project.org/. [Last accessed on 28 May 2024].
50. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev 2016;5:210.
51. Talbi C, Holmes EC, de Benedictis P, et al. Evolutionary history and dynamics of dog rabies virus in western and central Africa. J Gen Virol 2009;90:783-91.
52. Troupin C, Dacheux L, Tanguy M, et al. Large-scale phylogenomic analysis reveals the complex evolutionary history of rabies virus in multiple carnivore hosts. PLoS Pathog 2016;12:e1006041.
53. Hayman DT, Fooks AR, Marston DA, Garcia-R JC. The global phylogeography of lyssaviruses - challenging the ‘Out of Africa’ hypothesis. PLoS Negl Trop Dis 2016;10:e0005266.
54. Bourhy H, Reynes JM, Dunham EJ, et al. The origin and phylogeography of dog rabies virus. J Gen Virol 2008;89:2673-81.
55. Oem JK, Kim SH, Kim YH, Lee MH, Lee KK. Reemergence of rabies in the southern Han river region, Korea. J Wildl Dis 2014;50:681-8.
56. Velasco-Villa A, Mauldin MR, Shi M, et al. The history of rabies in the Western Hemisphere. Antiviral Res 2017;146:221-32.
57. Zeynalova S, Shikhiyev M, Aliyeva T, et al. Epidemiological characteristics of human and animal rabies in Azerbaijan. Zoonoses Public Health 2015;62:111-8.
58. Tenzin, Wacharapluesadee S, Denduangboripant J, et al. Rabies virus strains circulating in Bhutan: implications for control. Epidemiol Infect 2011;139:1457-62.
59. Nadin-Davis SA, Turner G, Paul JP, Madhusudana SN, Wandeler AI. Emergence of Arctic-like rabies lineage in India. Emerg Infect Dis 2007;13:111-6.
60. Sato G, Kobayashi Y, Shoji Y, et al. Molecular epidemiology of rabies from Maranhão and surrounding states in the northeastern region of Brazil. Arch Virol 2006;151:2243-51.
61. Carnieli P Jr, de Novaes Oliveira R, de Oliveira Fahl W, et al. Phylogenetic analysis of partial RNA-polymerase blocks II and III of Rabies virus isolated from the main rabies reservoirs in Brazil. Virus Genes 2012;45:76-83.
62. Johnson N, Letshwenyo M, Baipoledi EK, Thobokwe G, Fooks AR. Molecular epidemiology of rabies in Botswana: a comparison between antibody typing and nucleotide sequence phylogeny. Vet Microbiol 2004;101:31-8.
63. Nadin-Davis SA, Simani S, Armstrong J, Fayaz A, Wandeler AI. Molecular and antigenic characterization of rabies viruses from Iran identifies variants with distinct epidemiological origins. Epidemiol Infect 2003;131:777-90.
64. Ismail MZ, Al-Hamdi NK, Al-Amery AN, et al. Quantifying and mapping the burden of human and animal rabies in Iraq. PLoS Negl Trop Dis 2020;14:e0008622.
65. Horton DL, Ismail MZ, Siryan ES, et al. Rabies in Iraq: trends in human cases 2001-2010 and characterisation of animal rabies strains from Baghdad. PLoS Negl Trop Dis 2013;7:e2075.
66. Oude Munnink BB, Farag EABA, GeurtsvanKessel C, et al. First molecular analysis of rabies virus in Qatar and clinical cases imported into Qatar, a case report. Int J Infect Dis 2020;96:323-6.
67. Boldbaatar B, Inoue S, Tuya N, et al. Molecular epidemiology of rabies virus in Mongolia, 2005-2008. Jpn J Infect Dis 2010;63:358-63.
68. Meng S, Sun Y, Wu X, et al. Evolutionary dynamics of rabies viruses highlights the importance of China rabies transmission in Asia. Virology 2011;410:403-9.
69. Tuvshintulga B, Batmagnai E, Bazarragchaa E, Dulam P, Sugar S, Battsetseg B. Detection and molecular characterization of rabies virus in Mongolia during 2008-2010. Int J One Health 2015;1:26-31.
70. Yin JF, Wang JL, Tang Q, et al. Identification of animal rabies in Inner Mongolia and analysis of the etiologic characteristics. Biomed Environ Sci 2014;27:35-44.
71. Zhang Y, Vrancken B, Feng Y, et al. Cross-border spread, lineage displacement and evolutionary rate estimation of rabies virus in Yunnan Province, China. Virol J 2017;14:102.
72. Feng Y, Wang W, Guo J, et al. Disease outbreaks caused by steppe-type rabies viruses in China. Epidemiol Infect 2015;143:1287-91.
73. Tao XY, Tang Q, Rayner S, et al. Molecular phylodynamic analysis indicates lineage displacement occurred in Chinese rabies epidemics between 1949 to 2010. PLoS Negl Trop Dis 2013;7:e2294.
74. Wang L, Wu X, Bao J, Song C, Du J. Phylodynamic and transmission pattern of rabies virus in China and its neighboring countries. Arch Virol 2019;164:2119-29.
75. Liu H, Li L, Yuan X, et al. Rabies viruses in specific wild fur animals in northern China, 2017-2019. Transbound Emerg Dis 2020;67:2307-12.
76. Deviatkin AA, Lukashev AN, Poleshchuk EM, et al. The phylodynamics of the rabies virus in the Russian Federation. PLoS One 2017;12:e0171855.
77. Mey C, Metlin A, Duong V, et al. Evidence of two distinct phylogenetic lineages of dog rabies virus circulating in Cambodia. Infect Genet Evol 2016;38:55-61.
78. Tohma K, Saito M, Demetria CS, et al. Molecular and mathematical modeling analyses of inter-island transmission of rabies into a previously rabies-free island in the Philippines. Infect Genet Evol 2016;38:22-8.
79. Tohma K, Saito M, Kamigaki T, et al. Phylogeographic analysis of rabies viruses in the Philippines. Infect Genet Evol 2014;23:86-94.
80. Yamagata J, Ahmed K, Khawplod P, et al. Molecular epidemiology of rabies in Vietnam. Microbiol Immunol 2007;51:833-40.
81. Reddy RVC, Mohana Subramanian B, Surendra KSNL, et al. Rabies virus isolates of India - simultaneous existence of two distinct evolutionary lineages. Infect Genet Evol 2014;27:163-72.
82. Matsumoto T, Ahmed K, Karunanayake D, et al. Molecular epidemiology of human rabies viruses in Sri Lanka. Infect Genet Evol 2013;18:160-7.
83. Nanayakkara S, Smith JS, Rupprecht CE. Rabies in Sri Lanka: splendid isolation. Emerg Infect Dis 2003;9:368-71.
84. Baby J, Mani RS, Abraham SS, et al. Natural rabies infection in a domestic fowl (Gallus domesticus): a report from India. PLoS Negl Trop Dis 2015;9:e0003942.
85. Boldbaatar B, Inoue S, Tuya N, et al. Molecular epidemiology of rabies virus in Mongolia, 2005-2008. Jpn J Infect Dis 2010;63:358-63.
86. Yang DK, Park YN, Hong GS, et al. Molecular characterization of Korean rabies virus isolates. J Vet Sci 2011;12:57-63.
87. Hyun BH, Lee KK, Kim IJ, et al. Molecular epidemiology of rabies virus isolates from South Korea. Virus Res 2005;114:113-25.
88. Shao XQ, Yan XJ, Luo GL, et al. Genetic evidence for domestic raccoon dog rabies caused by Arctic-like rabies virus in Inner Mongolia, China. Epidemiol Infect 2011;139:629-35.
89. Tao XY, Guo ZY, Li H, et al. Rabies cases in the west of China have two distinct origins. PLoS Negl Trop Dis 2015;9:e0004140.
90. Jamil KM, Ahmed K, Hossain M, et al. Arctic-like rabies virus, Bangladesh. Emerg Infect Dis 2012;18:2021-4.
91. Nagaraja T, Madhusudana S, Desai A. Molecular characterization of the full-length genome of a rabies virus isolate from India. Virus Genes 2008;36:449-59.
92. Cherian S, Singh R, Singh KP, et al. Phylogenetic analysis of Indian rabies virus isolates targeting the complete glycoprotein gene. Infect Genet Evol 2015;36:333-8.
93. Reddy RVC, Mukherjee F, Rana SK, et al. Rabies virus infection in domestic buffaloes and wild animals in India. J Adv Vet Res 2015;5:68-83. Available from: https://advetresearch.com/index.php/AVR/article/view/49. [Last accessed on 28 May 2024]
94. Manjunatha Reddy GB, Krishnappa S, Vinayagamurthy B, et al. Molecular epidemiology of rabies virus circulating in domestic animals in India. Virusdisease 2018;29:362-8.
95. Reddy GBM, Singh R, Singh KP, et al. Molecular epidemiological analysis of wild animal rabies isolates from India. Vet World 2019;12:352-7.
96. Sadeuh-Mba SA, Momo JB, Besong L, Loul S, Njouom R. Molecular characterization and phylogenetic relatedness of dog-derived Rabies Viruses circulating in Cameroon between 2010 and 2016. PLoS Negl Trop Dis 2017;11:e0006041.
97. Kia G, Huang Y, Zhou M, et al. Molecular characterization of a rabies virus isolated from trade dogs in Plateau State, Nigeria. Sokoto J Vet Sc 2018;16:54.
98. Gigante CM, Yale G, Condori RE, et al. Portable rabies virus sequencing in canine rabies endemic countries using the Oxford nanopore MinION. Viruses 2020;12:1255.
99. Hayman DT, Johnson N, Horton DL, et al. Evolutionary history of rabies in Ghana. PLoS Negl Trop Dis 2011;5:e1001.
100. Coetzer A, Anahory I, Dias PT, et al. Enhanced diagnosis of rabies and molecular evidence for the transboundary spread of the disease in Mozambique. J S Afr Vet Assoc 2017;88:e1-9.
101. Hirano S, Itou T, Shibuya H, Kashiwazaki Y, Sakai T. Molecular epidemiology of rabies virus isolates in Uganda. Virus Res 2010;147:135-8.
102. Feng Y, Wang Y, Xu W, et al. Animal rabies surveillance, China, 2004-2018. Emerg Infect Dis 2020;26:2825-34.
103. Tu C, Feng Y, Wang Y. Animal rabies in the People’s Republic of China. Rev Sci Tech 2018;37:519-28.
104. Guo Z, Tao X, Yin C, et al. National borders effectively halt the spread of rabies: the current rabies epidemic in China is dislocated from cases in neighboring countries. PLoS Negl Trop Dis 2013;7:e2039.
105. Feng Y, Wang Y, Hada, et al. Diversity of rabies virus detected in Inner Mongolia, China, 2019-2021. Transbound Emerg Dis 2022;69:249-53.
106. Dibia IN, Sumiarto B, Susetya H, Putra AA, Scott-Orr H, Mahardika GN. Phylogeography of the current rabies viruses in Indonesia. J Vet Sci 2015;16:459-66.
107. Susetya H, Sugiyama M, Inagaki A, Ito N, Mudiarto G, Minamoto N. Molecular epidemiology of rabies in Indonesia. Virus Res 2008;135:144-9.
108. Susilawathi NM, Darwinata AE, Dwija IB, et al. Epidemiological and clinical features of human rabies cases in Bali 2008-2010. BMC Infect Dis 2012;12:81.
109. Tsai KJ, Hsu WC, Chuang WC, et al. Emergence of a sylvatic enzootic formosan ferret badger-associated rabies in Taiwan and the geographical separation of two phylogenetic groups of rabies viruses. Vet Microbiol 2016;182:28-34.
110. Chiou HY, Hsieh CH, Jeng CR, Chan FT, Wang HY, Pang VF. Molecular characterization of cryptically circulating rabies virus from ferret badgers, Taiwan. Emerg Infect Dis 2014;20:790-8.
111. Lin YC, Chu PY, Chang MY, Hsiao KL, Lin JH, Liu HF. Spatial temporal dynamics and molecular evolution of re-emerging rabies virus in Taiwan. Int J Mol Sci 2016;17:392.
112. Saito M, Oshitani H, Orbina JR, et al. Genetic diversity and geographic distribution of genetically distinct rabies viruses in the Philippines. PLoS Negl Trop Dis 2013;7:e2144.
113. Tao XY, Tang Q, Li H, et al. Molecular epidemiology of rabies in Southern People’s Republic of China. Emerg Infect Dis 2009;15:1192-8.
114. Liu Q, Xiong Y, Luo TR, et al. Molecular epidemiology of rabies in Guangxi Province, south of China. J Clin Virol 2007;39:295-303.
115. Zhang YZ, Xiong CL, Zou Y, et al. Molecular characterization of rabies virus isolates in China during 2004. Virus Res 2006;121:179-88.
116. Garcés-Ayala F, Aréchiga-Ceballos N, Ortiz-Alcántara JM, et al. Molecular characterization of atypical antigenic variants of canine rabies virus reveals its reintroduction by wildlife vectors in southeastern Mexico. Arch Virol 2017;162:3629-37.
117. Scott TP, Fischer M, Khaiseb S, et al. Complete genome and molecular epidemiological data infer the maintenance of rabies among kudu (Tragelaphus strepsiceros) in Namibia. PLoS One 2013;8:e58739.
118. Lan YC, Wen TH, Chang CC, et al. Indigenous wildlife rabies in Taiwan: ferret badgers, a long term terrestrial reservoir. Biomed Res Int 2017;2017:5491640.
119. Zhao JH, Zhao LF, Liu F, Jiang HY, Yang JL. Ferret badger rabies in Zhejiang, Jiangxi and Taiwan, China. Arch Virol 2019;164:579-84.
120. David D, Dveres N, Yakobson BA, Davidson I. Emergence of dog rabies in the northern region of Israel. Epidemiol Infect 2009;137:544-8.
121. Marston DA, Horton DL, Nunez J, et al. Genetic analysis of a rabies virus host shift event reveals within-host viral dynamics in a new host. Virus Evol 2017;3:vex038.
122. East ML, Hofer H, Cox JH, Wulle U, Wiik H, Pitra C. Regular exposure to rabies virus and lack of symptomatic disease in Serengeti spotted hyenas. Proc Natl Acad Sci U S A 2001;98:15026-31.
123. Lembo T, Hampson K, Haydon DT, et al. Exploring reservoir dynamics: a case study of rabies in the Serengeti ecosystem. J Appl Ecol 2008;45:1246-57.
124. Marston DA, Horton DL, Ngeleja C, et al. Ikoma lyssavirus, highly divergent novel lyssavirus in an African civet. Emerg Infect Dis 2012;18:664-7.
125. Madhusudana SN, Mani R, Ashwin YB, Desai A. Rabid fox bites and human rabies in a village community in southern India: epidemiological and laboratory investigations, management and follow-up. Vector Borne Zoonotic Dis 2013;13:324-9.
126. Velasco-Villa A, Messenger SL, Orciari LA, et al. New rabies virus variant in Mexican immigrant. Emerg Infect Dis 2008;14:1906-8.
127. Smithsonian’s National Zoo and Conservation Biology Institute. Red panda. Available from: https://nationalzoo.si.edu/animals/red-panda. [Last accessed on 28 May 2024].
128. Weyer J, Szmyd-Potapczuk AV, Blumberg LH, et al. Epidemiology of human rabies in South Africa, 1983-2007. Virus Res 2011;155:283-90.
129. de Brito MG, Chamone TL, da Silva FJ, et al. Antemortem diagnosis of human rabies in a veterinarian infected when handling a herbivore in Minas Gerais, Brazil. Rev Inst Med Trop Sao Paulo 2011;53:39-44.
130. Ogo M, Nel L, Sabeta C. Phylogenetic evidence of the public and veterinary health threat of dog rabies in Nigeria. Nig Vet J 2011;32.
131. Contou D, Dacheux L, Bendib I, et al. Severe ketoalkalosis as initial presentation of imported human rabies in France. J Clin Microbiol 2015;53:1979-82.
132. Smith J, McElhinney L, Parsons G, et al. Case report: rapid ante-mortem diagnosis of a human case of rabies imported into the UK from the Philippines. J Med Virol 2003;69:150-5.
133. Nosaki Y, Maeda K, Watanabe M, et al. Fourth imported rabies case since the eradication of rabies in Japan in 1957. J Travel Med 2021;28:taab151.
134. Rimhanen-Finne R, Järvinen A, Kuusi M, et al. Imported human rabies, the Philippines and Finland, 2007. Emerg Infect Dis 2010;16:1318-9.
135. Johnson N, Fooks A, McColl K. Human rabies case with long incubation, Australia. Emerg Infect Dis 2008;14:1950-1.
136. Coetzee P, Weyer J, Paweska JT, Burt FJ, Markotter W, Nel LH. Use of a molecular epidemiological database to track human rabies case histories in South Africa. Epidemiol Infect 2008;136:1270-6.
137. Sabeta CT, Weyer J, Geertsma P, et al. Emergence of rabies in the Gauteng Province, South Africa: 2010-2011. J S Afr Vet Assoc 2013;84:E1-5.
138. Mahardika GN, Dibia N, Budayanti NS, et al. Phylogenetic analysis and victim contact tracing of rabies virus from humans and dogs in Bali, Indonesia. Epidemiol Infect 2014;142:1146-54.
139. Queiroz LH, Favoretto SR, Cunha EMS, et al. Rabies in southeast Brazil: a change in the epidemiological pattern. Arch Virol 2012;157:93-105.
140. Brunker K, Marston DA, Horton DL, et al. Elucidating the phylodynamics of endemic rabies virus in eastern Africa using whole-genome sequencing. Virus Evol 2015;1:vev011.
141. Gong W, Jiang Y, Za Y, et al. Temporal and spatial dynamics of rabies viruses in China and Southeast Asia. Virus Res 2010;150:111-8.
142. Tao XY, Li ML, Wang Q, et al. The reemergence of human rabies and emergence of an Indian subcontinent lineage in Tibet, China. PLoS Negl Trop Dis 2019;13:e0007036.
143. Zhang HL, Zhang YZ, Yang WH, et al. Molecular epidemiology of reemergent rabies in Yunnan Province, southwestern China. Emerg Infect Dis 2014;20:1433-42.
144. Omodo M, Ar Gouilh M, Mwiine FN, et al. Rabies in Uganda: rabies knowledge, attitude and practice and molecular characterization of circulating virus strains. BMC Infect Dis 2020;20:200.
145. Yu J, Li H, Tang Q, et al. The spatial and temporal dynamics of rabies in China. PLoS Negl Trop Dis 2012;6:e1640.
146. Tian H, Feng Y, Vrancken B, et al. Transmission dynamics of re-emerging rabies in domestic dogs of rural China. PLoS Pathog 2018;14:e1007392.
147. Carnieli P Jr, Ruthner Batista HB, de Novaes Oliveira R, Castilho JG, Vieira LF. Phylogeographic dispersion and diversification of rabies virus lineages associated with dogs and crab-eating foxes (Cerdocyon thous) in Brazil. Arch Virol 2013;158:2307-13.
148. Holtz A, Baele G, Bourhy H, Zhukova A. Integrating full and partial genome sequences to decipher the global spread of canine rabies virus. Nat Commun 2023;14:4247.
149. Lushasi K, Brunker K, Rajeev M, et al. Integrating contact tracing and whole-genome sequencing to track the elimination of dog-mediated rabies: an observational and genomic study. Elife 2023;12:e85262.
150. Muleya W, Chambaro HM, Sasaki M, et al. Genetic diversity of rabies virus in different host species and geographic regions of Zambia and Zimbabwe. Virus Genes 2019;55:713-9.
151. Coetzer A, Coertse J, Makalo MJ, Molomo M, Markotter W, Nel LH. Epidemiology of rabies in Lesotho: the importance of routine surveillance and virus characterization. Trop Med Infect Dis 2017;2:30.
152. Carnieli P Jr, de Novaes Oliveira R, Macedo CI, Castilho JG. Phylogeography of rabies virus isolated from dogs in Brazil between 1985 and 2006. Arch Virol 2011;156:1007-12.
153. Denduangboripant J, Wacharapluesadee S, Lumlertdacha B, et al. Transmission dynamics of rabies virus in Thailand: implications for disease control. BMC Infect Dis 2005;5:52.
154. Ma C, Hao X, Deng H, et al. Re-emerging of rabies in Shaanxi province, China, from 2009 to 2015. J Med Virol 2017;89:1511-9.
155. Brunker K, Lemey P, Marston DA, et al. Landscape attributes governing local transmission of an endemic zoonosis: rabies virus in domestic dogs. Mol Ecol 2018;27:773-88.
156. Carnieli P Jr, Castilho JG, Fahl Wde O, Véras NM, Carrieri ML, Kotait I. Molecular characterization of rabies virus isolates from dogs and crab-eating foxes in Northeastern Brazil. Virus Res 2009;141:81-9.
157. Kobayashi Y, Inoue N, Sato G, et al. Phylogenetic characterization of rabies virus isolates from Carnivora in Brazil. J Vet Med Sci 2007;69:691-6.
158. Ma J, Li S, Yang Y, Wang Q, Huo Y. Epidemiological and phylogenetic analysis of rabies virus isolated from humans in Henan province, China. Arch Virol 2019;164:2811-7.
159. Zhang JY, Zhang B, Zhang SF, et al. Dog-transmitted Rabies in Beijing, China. Biomed Environ Sci 2017;30:526-9.
160. Zhang S, Liu Y, Hou Y, et al. Epidemic and maintenance of rabies in Chinese ferret badgers (Melogale moschata) indicated by epidemiology and the molecular signatures of rabies viruses. Virol Sin 2013;28:146-51.
161. Chao J, Peng Q, Zhao J, et al. Different rabies outbreaks on two beef cattle farms in the same province of China: diagnosis, virus characterization and epidemiological analysis. Transbound Emerg Dis 2021;68:1216-28.
162. Mehta S, Charan P, Dahake R, Mukherjee S, Chowdhary A. Molecular characterization of nucleoprotein gene of rabies virus from Maharashtra, India. J Postgrad Med 2016;62:105-8.
163. Vigilato MA, Clavijo A, Knobl T, et al. Progress towards eliminating canine rabies: policies and perspectives from Latin America and the Caribbean. Philos Trans R Soc Lond B Biol Sci 2013;368:20120143.
164. Gibson AD, Yale G, Corfmat J, et al. Elimination of human rabies in Goa, India through an integrated one health approach. Nat Commun 2022;13:2788.
165. Velasco-Villa A, Orciari LA, Souza V, et al. Molecular epizootiology of rabies associated with terrestrial carnivores in Mexico. Virus Res 2005;111:13-27.
166. Chang JC, Tsai KJ, Hsu WC, et al. Rabies virus infection in ferret badgers (Melogale moschata subaurantiaca) in Taiwan: a retrospective study. J Wildl Dis 2015;51:923-8.
167. Schmiedel S, Panning M, Lohse A, et al. Case report on fatal human rabies infection in Hamburg, Germany, March 2007. Euro Surveill 2007;12:E070531.5.
168. Solomon T, Marston D, Mallewa M, et al. Paralytic rabies after a two week holiday in India. BMJ 2005;331:501-3.
169. European Centre for Disease Prevention and Control. Rabies - Annual epidemiological report for 2019. Available from: https://www.ecdc.europa.eu/en/publications-data/rabies-annual-epidemiological-report-2019. [Last accessed on 28 May 2024].
170. Lumlertdacha B, Wacharapluesadee S, Denduangboripant J, et al. Complex genetic structure of the rabies virus in Bangkok and its surrounding provinces, Thailand: implications for canine rabies control. Trans R Soc Trop Med Hyg 2006;100:276-81.
171. Theys K, Lemey P, Vandamme AM, Baele G. Advances in visualization tools for phylogenomic and phylodynamic studies of viral diseases. Front Public Health 2019;7:208.
172. Hadfield J, Megill C, Bell SM, et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics 2018;34:4121-3.
173. O'Toole Á, Scher E, Underwood A, et al. Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool. Virus Evol 2021;7:veab064.
174. Bautista C, Jaswant G, French H, et al. Whole genome sequencing for rapid characterization of rabies virus using nanopore technology. J Vis Exp 2023.
175. ARTIC network. Available from: https://artic.network/. [Last accessed on 28 May 2024].
176. Brito AF, Semenova E, Dudas G, et al; Bulgarian SARS-CoV-2 sequencing group; Communicable Diseases Genomics Network (Australia and New Zealand); COVID-19 Impact Project; Danish Covid-19 Genome Consortium; Fiocruz COVID-19 Genomic Surveillance Network; GISAID core curation team; Network for Genomic Surveillance in South Africa (NGS-SA); Swiss SARS-CoV-2 Sequencing Consortium. Global disparities in SARS-CoV-2 genomic surveillance. Nat Commun 2022;13:7003.
177. Ling-Hu T, Rios-Guzman E, Lorenzo-Redondo R, Ozer EA, Hultquist JF. Challenges and Opportunities For Global Genomic Surveillance Strategies in the COVID-19 era. Viruses 2022;14:2532.
178. Inzaule SC, Tessema SK, Kebede Y, Ogwell Ouma AE, Nkengasong JN. Genomic-informed pathogen surveillance in Africa: opportunities and challenges. Lancet Infect Dis 2021;21:e281-9.
179. Campbell K. MADDOG: Method for assignment, definition and designation of global lineages. Available from: https://github.com/KathrynCampbell/MADDOG. [Last accessed on 28 May 2024].