REFERENCES

1. Gianfredi V, Bragazzi NL, Nucci D, et al. Harnessing big data for communicable tropical and sub-tropical disorders: implications from a systematic review of the literature. Front Public Health 2018;6:90.

2. McArthur DB. Emerging infectious diseases. Nurs Clin North Am 2019;54:297-311.

3. World Health Organization (WHO). The top 10 causes of death. Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death [Last accessed on 22 Mar 2022].

4. Bönecke, J. ESIDA: Epidemiological surveillance for infectious diseases in sub-saharan africa. Available from: https://www.haw-hamburg.de/en/research/projects-a-z/research-projects/project/project/show/esida/ [Last accessed on 22 Mar 2022].

5. . Cookson, ST, Buehler JW. Emergency and disaster health surveillance. In: Ahrens W. Pigeot I, editors. Handbook of Epidemiology. New York: Springer; 2014. p. 731-59.

6. Milinovich GJ, Williams GM, Clements ACA, Hu W. Internet-based surveillance systems for monitoring emerging infectious diseases. Lancet Infect Dis 2014;14:160-8.

7. Riel N, Auwerx K, Debbaut P, Van Hees S, Schoenmakers B. The effect of Dr Google on doctor-patient encounters in primary care: a quantitative, observational, cross-sectional study. BJGP Open 2017;1:bjgpopen17X100833.

8. Samaras L, García-Barriocanal E, Sicilia MA. Comparing Social media and Google to detect and predict severe epidemics. Sci Rep 2020;10:4747.

9. Google Trends. The year in review. Available from: https://trends.google.com/trends/yis/2020/GLOBAL/ [Last accessed on 22 Mar 2022].

10. Cousins HC, Cousins CC, Harris A, Pasquale LR. Regional infoveillance of COVID-19 case rates: analysis of search-engine query patterns. J Med Internet Res 2020;22:e19483.

11. Effenberger M, Kronbichler A, Shin JI, Mayer G, Tilg H, Perco P. Association of the COVID-19 pandemic with Internet Search Volumes: a Google TRENDSTM Analysis. Int J Infect Dis 2020;95:192-7.

12. Higgins TS, Wu AW, Sharma D, Illing EA, Rubel K, Ting JY. Snot Force Alliance. Correlations of Online Search Engine Trends With Coronavirus Disease (COVID-19) Incidence: infodemiology study. JMIR Public Health Surveill 2020;6:e19702.

13. Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. Detecting influenza epidemics using search engine query data. Nature 2009;457:1012-4.

14. Kandula S, Shaman J. Reappraising the utility of Google flu trends. PLoS Comput Biol 2019;15:e1007258.

15. Lazer D, Kennedy R, King G, Vespignani A. Big data. The parable of Google Flu: traps in big data analysis. Science 2014;343:1203-5.

16. Nichols JA, Herbert Chan HW, Baker MAB. Machine learning: applications of artificial intelligence to imaging and diagnosis. Biophys Rev 2019;11:111-8.

17. Eysenbach G. Infodemiology and infoveillance: framework for an emerging set of public health informatics methods to analyze search, communication and publication behavior on the Internet. J Med Internet Res 2009;11:e11.

18. Mavragani A, Ochoa G. Google trends in infodemiology and infoveillance: methodology framework. JMIR Public Health Surveill 2019;5:e13439.

19. McFee RB. Emerging Infectious Diseases - Overview. Dis Mon 2018;64:163-9.

20. Choi J, Cho Y, Shim E, Woo H. Web-based infectious disease surveillance systems and public health perspectives: a systematic review. BMC Public Health 2016;16:1238.

21. Barros JM, Duggan J, Rebholz-Schuhmann D. The application of internet-based sources for public health surveillance (infoveillance): systematic review. J Med Internet Res 2020;22:e13680.

22. National Institute of Allergy and Infectious Diseases (NIAID). NIAID emerging infectious diseases / pathogens. Available from: https://www.niaid.nih.gov/research/emerging-infectious-diseases-pathogens [Last accessed on 22 Mar 2022].

23. Nsubuga P, White ME, Thacker SB, et al. Public health surveillance: a tool for targeting and monitoring interventions. In: Jamison DT, Breman JG, Measham AR, et al., editors. Disease Control Priorities in Developing Countries. 2nd edition. USA: Washington (DC): The International Bank for Reconstruction and Development / The World Bank; 2006. Chapter 53.

24. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71.

25. Monnaka VU, Oliveira CAC. Google trends correlation and sensitivity for outbreaks of dengue and yellow fever in the state of São Paulo. Einstein (Sao Paulo) 2021;19:eAO5969.

26. Husnayain A, Fuad A, Lazuardi L. Correlation between Google Trends on dengue fever and national surveillance report in Indonesia. Glob Health Action 2019;12:1552652.

27. Chan EH, Sahai V, Conrad C, Brownstein JS. Using web search query data to monitor dengue epidemics: a new model for neglected tropical disease surveillance. PLoS Negl Trop Dis 2011;5:e1206.

28. Marques-Toledo CA, Degener CM, Vinhal L, et al. Dengue prediction by the web: Tweets are a useful tool for estimating and forecasting Dengue at country and city level. PLoS Negl Trop Dis 2017;11:e0005729.

29. Strauss R, Lorenz E, Kristensen K, et al. Investigating the utility of Google trends for Zika and Chikungunya surveillance in Venezuela. BMC Public Health 2020;20:947.

30. Adebayo G, Neumark Y, Gesser-Edelsburg A, Abu Ahmad W, Levine H. Zika pandemic online trends, incidence and health risk communication: a time trend study. BMJ Glob Health 2017;2:e000296.

31. Morsy S, Dang TN, Kamel MG, et al. Prediction of Zika-confirmed cases in Brazil and Colombia using Google Trends. Epidemiol Infect 2018;146:1625-7.

32. Teng Y, Bi D, Xie G, et al. Dynamic forecasting of Zika epidemics using google trends. PLoS One 2017;12:e0165085.

33. Aragón-Ayala CJ, Copa-Uscamayta J, Herrera L, Zela-Coila F, Quispe-Juli CU. Interest in COVID-19 in Latin America and the Caribbean: an infodemiological study using Google Trends. Cad Saude Publica 2021;37:e00270720.

34. Satpathy P, Kumar S, Prasad P. Suitability of Google Trends™ for digital surveillance during ongoing COVID-19 epidemic: a case study from India. Disaster Med Public Health Prep 2021:1-10.

35. SeyyedHosseini S, BasirianJahromi R. COVID-19 pandemic in the Middle East countries: coronavirus-seeking behavior versus coronavirus-related publications. Scientometrics 2021:1-21.

36. Schnoell J, Besser G, Jank BJ, et al. The association between COVID-19 cases and deaths and web-based public inquiries. Infect Dis (Lond) 2021;53:176-83.

37. Sousa-Pinto B, Anto A, Czarlewski W, Anto JM, Fonseca JA, Bousquet J. Assessment of the impact of media coverage on COVID-19-related google trends data: infodemiology study. J Med Internet Res 2020;22:e19611.

38. Vue D, Tang Q. Zika virus overview: transmission, origin, pathogenesis, animal model and diagnosis. Zoonoses (Burlingt) 2021:1.

39. Budd J, Miller BS, Manning EM, et al. Digital technologies in the public-health response to COVID-19. Nat Med 2020;26:1183-92.

One Health & Implementation Research
ISSN 2769-6413 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/