REFERENCES

1. Association for Study of Liver. EASL clinical practice guidelines: Wilson’s disease. J Hepatol. 2012;56:671-85.

2. Penning LC, Berenguer M, Czlonkowska A, et al. A century of progress on Wilson disease and the enduring challenges of genetics, diagnosis, and treatment. Biomedicines. 2023;11:420.

3. Poujois A, Woimant F. Challenges in the diagnosis of Wilson disease. Ann Transl Med. 2019;7:S67.

4. Schilsky ML, Roberts EA, Bronstein JM, et al. A multidisciplinary approach to the diagnosis and management of Wilson disease: executive summary of the 2022 practice guidance on Wilson disease from the American Association for the Study of Liver Diseases. Hepatology. 2023;77:1428-55.

5. Bajwa J, Munir U, Nori A, Williams B. Artificial intelligence in healthcare: transforming the practice of medicine. Future Healthc J. 2021;8:e188-94.

6. Sarker IH. AI-based modeling: techniques, applications and research issues towards automation, intelligent and smart systems. SN Comput Sci. 2022;3:158.

7. Bull PC, Thomas GR, Rommens JM, Forbes JR, Cox DW. The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet. 1993;5:327-37.

8. Hellman NE, Gitlin JD. Ceruloplasmin metabolism and function. Annu Rev Nutr. 2002;22:439-58.

9. Nose Y, Thiele DJ. Mechanism and regulation of intestinal copper absorption. Genes Nutr. 2010;5:11-4.

10. Stremmel W, Weiskirchen R. Wilson disease: more complex than just simply a copper overload condition? AME Med J. 2022;7:26.

11. Stremmel W, Weiskirchen R. Therapeutic strategies in Wilson disease: pathophysiology and mode of action. Ann Transl Med. 2021;9:732.

12. National Library of Medicine. Genome data viewer. Available from: https://www.ncbi.nlm.nih.gov/gdv. [Last accessed on 26 Feb 2025].

13. Haas KL, Putterman AB, White DR, Thiele DJ, Franz KJ. Model peptides provide new insights into the role of histidine residues as potential ligands in human cellular copper acquisition via Ctr1. J Am Chem Soc. 2011;133:4427-37.

14. OMIM. An online catalog of human genes and genetic disorders. Available from: https://www.omim.org/. [Last accessed on 26 Feb 2025].

15. Catalani S, Paganelli M, Gilberti ME, et al. Free copper in serum: an analytical challenge and its possible applications. J Trace Elem Med Biol. 2018;45:176-80.

16. Singh P, Ahluwalia A, Saggar K, Grewal CS. Wilson’s disease: MRI features. J Pediatr Neurosci. 2011;6:27-8.

17. Kim TJ, Kim IO, Kim WS, et al. MR imaging of the brain in Wilson disease of childhood: findings before and after treatment with clinical correlation. AJNR Am J Neuroradiol. 2006;27:1373-8.

18. Litwin T, Rędzia-Ogrodnik B, Antos A, Przybyłkowski A, Członkowska A, Bembenek JP. Brain magnetic resonance imaging in Wilson’s disease-significance and practical aspects-a narrative review. Brain Sci. 2024;14:727.

19. Medici V, Czlonkowska A, Litwin T, Giulivi C. Diagnosis of Wilson disease and its phenotypes by using artificial intelligence. Biomolecules. 2021;11:1243.

20. Agarwal M, Saba L, Gupta SK, et al. Wilson disease tissue classification and characterization using seven artificial intelligence models embedded with 3D optimization paradigm on a weak training brain magnetic resonance imaging datasets: a supercomputer application. Med Biol Eng Comput. 2021;59:511-33.

21. Zhang B, Peng J, Chen H, Hu W. Machine learning for detecting Wilson’s disease by amplitude of low-frequency fluctuation. Heliyon. 2023;9:e18087.

22. Liang C, Kelly SP, Shen R, et al. Predicting Wilson’s disease progression using machine learning with real-world electronic health records. medRxiv 2023; medRxiv:2023.07.28.23293309.

23. Yang Y, Wang GA, Fang S, et al. Decoding Wilson disease: a machine learning approach to predict neurological symptoms. Front Neurol. 2024;15:1418474.

24. Vatsyayan A, Kumar M, Saikia BJ, Scaria V, B K B. WilsonGenAI a deep learning approach to classify pathogenic variants in Wilson disease. PLoS One. 2024;19:e0303787.

25. Berman DH, Leventhal RI, Gavaler JS, Cadoff EM, Van Thiel DH. Clinical differentiation of fulminant Wilsonian hepatitis from other causes of hepatic failure. Gastroenterology. 1991;100:1129-34.

26. Eisenbach C, Sieg O, Stremmel W, Encke J, Merle U. Diagnostic criteria for acute liver failure due to Wilson disease. World J Gastroenterol. 2007;13:1711-4.

27. McArdle HJ, Kyriakou P, Grimes A, Mercer JF, Danks DM. The effect of D-penicillamine on metallothionein mRNA levels and copper distribution in mouse hepatocytes. Chem Biol Interact. 1990;75:315-24.

28. Schilsky ML, Scheinberg IH, Sternlieb I. Liver transplantation for Wilson’s disease: indications and outcome. Hepatology. 1994;19:583-7.

29. Weiss KH, Schäfer M, Gotthardt DN, et al. Outcome and development of symptoms after orthotopic liver transplantation for Wilson disease. Clin Transplant. 2013;27:914-22.

30. Stremmel W, Meyerrose KW, Niederau C, Hefter H, Kreuzpaintner G, Strohmeyer G. Wilson disease: clinical presentation, treatment, and survival. Ann Intern Med. 1991;115:720-6.

31. Cai H, Cheng X, Wang XP. ATP7B gene therapy of autologous reprogrammed hepatocytes alleviates copper accumulation in a mouse model of Wilson’s disease. Hepatology. 2022;76:1046-57.

32. Rajpurkar P, Chen E, Banerjee O, Topol EJ. AI in health and medicine. Nat Med. 2022;28:31-8.

33. Shaheen MY. Applications of artificial intelligence (AI) in healthcare: a review. Sci Open Preprints. 2021;Epub ahead of print.

34. Kim P, Zhang CC, Thoröe-Boveleth S, et al. Accurate measurement of copper overload in an experimental model of wilson disease by laser ablation inductively coupled plasma mass spectrometry. Biomedicines. 2020;8:356.

35. Weiskirchen R, Weiskirchen S, Kim P, Winkler R. Software solutions for evaluation and visualization of laser ablation inductively coupled plasma mass spectrometry imaging (LA-ICP-MSI) data: a short overview. J Cheminform. 2019;11:16.

36. Reddy S, Allan S, Coghlan S, Cooper P. A governance model for the application of AI in health care. J Am Med Inform Assoc. 2020;27:491-7.

37. Alowais SA, Alghamdi SS, Alsuhebany N, et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med Educ. 2023;23:689.

38. Morley J, Machado CCV, Burr C, et al. The ethics of AI in health care: a mapping review. Soc Sci Med. 2020;260:113172.

39. Lee CS, Lee AY. Clinical applications of continual learning machine learning. Lancet Digit Health. 2020;2:e279-81.

40. Blasch E, Pham T, Chong C, et al. Machine learning/artificial intelligence for sensor data fusion-opportunities and challenges. IEEE Aerosp Electron Syst Mag. 2021;36:80-93.

41. Castiglioni I, Rundo L, Codari M, et al. AI applications to medical images: from machine learning to deep learning. Phys Med. 2021;83:9-24.

Metabolism and Target Organ Damage
ISSN 2769-6375 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/