REFERENCES
1. Lonardo A, Leoni S, Alswat KA, Fouad Y. History of nonalcoholic fatty liver disease. Int J Mol Sci 2020;21:5888.
2. Mantovani A, Csermely A, Petracca G, et al. Non-alcoholic fatty liver disease and risk of fatal and non-fatal cardiovascular events: an updated systematic review and meta-analysis. Lancet Gastroenterol Hepatol 2021;6:903-13.
3. Aragon G, Younossi ZM. When and how to evaluate mildly elevated liver enzymes in apparently healthy patients. Cleve Clin J Med 2010;77:195-204.
4. Howell WL, Manion WC. The low incidence of myocardial infarction in patients with portal cirrhosis of the liver: a review of 639 cases of cirrhosis of the liver from 17,731 autopsies. Am Heart J 1960;60:341-4.
5. Ikeda Y, Fujii J, Taniguchi N, Meister A. Expression of an active glycosylated human gamma-glutamyl transpeptidase mutant that lacks a membrane anchor domain. Proc Natl Acad Sci U S A 1995;92:126-30.
6. Meyts E, Heisterkamp N, Groffen J. Cloning and nucleotide sequence of human gamma-glutamyl transpeptidase. Proc Natl Acad Sci U S A 1988;85:8840-4.
7. West MB, Chen Y, Wickham S, et al. Novel insights into eukaryotic γ-glutamyltranspeptidase 1 from the crystal structure of the glutamate-bound human enzyme. J Biol Chem 2013;288:31902-13.
8. West MB, Wickham S, Quinalty LM, Pavlovicz RE, Li C, Hanigan MH. Autocatalytic cleavage of human gamma-glutamyl transpeptidase is highly dependent on N-glycosylation at asparagine 95. J Biol Chem 2011;286:28876-88.
9. Hanigan MH. Gamma-glutamyl transpeptidase: redox regulation and drug resistance. Adv Cancer Res 2014;122:103-41.
10. Hanigan MH, Frierson HF Jr. Immunohistochemical detection of gamma-glutamyl transpeptidase in normal human tissue. J Histochem Cytochem 1996;44:1101-8.
11. PetitClerc C, Shiele F, Bagrel D, Mahassen A, Siest G. Kinetic properties of gamma-glutamyltransferase from human liver. Clin Chem 1980;26:1688-93.
12. Wickham S, West MB, Cook PF, Hanigan MH. Gamma-glutamyl compounds: substrate specificity of gamma-glutamyl transpeptidase enzymes. Anal Biochem 2011;414:208-14.
13. Lieberman MW, Wiseman AL, Shi ZZ, et al. Growth retardation and cysteine deficiency in gamma-glutamyl transpeptidase-deficient mice. Proc Natl Acad Sci U S A 1996;93:7923-6.
14. Stark AA, Zeiger E, Pagano DA. Glutathione metabolism by gamma-glutamyltranspeptidase leads to lipid peroxidation: characterization of the system and relevance to hepatocarcinogenesis. Carcinogenesis 1993;14:183-9.
15. Dominici S, Paolicchi A, Lorenzini E, et al. Gamma-glutamyltransferase-dependent prooxidant reactions: a factor in multiple processes. Biofactors 2003;17:187-98.
16. Dominici S, Paolicchi A, Corti A, Maellaro E, Pompella A. Prooxidant reactions promoted by soluble and cell-bound γ-glutamyltransferase activity. Gluthione transferases and gamma-glutamyl transpeptidases. Elsevier; 2005. pp. 484-501.
17. Paolicchi A, Minotti G, Tonarelli P, et al. Gamma-glutamyl transpeptidase-dependent iron reduction and LDL oxidation-a potential mechanism in atherosclerosis. J Investig Med 1999;47:151-60.
18. Koenig G, Seneff S. Gamma-glutamyltransferase: a predictive biomarker of cellular antioxidant inadequacy and disease risk. Dis Markers 2015;2015:818570.
20. Neuman MG, Malnick S, Chertin L. Gamma glutamyl transferase - an underestimated marker for cardiovascular disease and the metabolic syndrome. J Pharm Pharm Sci 2020;23:65-74.
21. Diehl AM, Goodman Z, Ishak KG. Alcohollike liver disease in nonalcoholics. A clinical and histologic comparison with alcohol-induced liver injury. Gastroenterology 1988;95:1056-62.
22. Rouillon JM & Hanslik B. Élevation isolee de la γ-GT. Société Nationale Française de Gastro-Entérologie https://www.snfge.org/download/file/fid/3373.
23. Kalas MA, Chavez L, Leon M, Taweesedt PT, Surani S. Abnormal liver enzymes: A review for clinicians. World J Hepatol 2021;13:1688-98.
24. Brennan PN, Dillon JF, Tapper EB. Gamma-glutamyl transferase (γ-GT) - an old dog with new tricks? Liver Int 2022;42:9-15.
25. Cipolli M, Fethney J, Waters D, et al. Occurrence, outcomes and predictors of portal hypertension in cystic fibrosis: a longitudinal prospective birth cohort study. J Cyst Fibros 2020;19:455-9.
26. Görtzen J, Hunka LM, Vonnahme M, et al. γ-glutamyl transferase is an independent biomarker of splanchnic thrombosis in patients with myeloproliferative neoplasm. Medicine (Baltimore) 2016;95:e3355.
27. Pugliese N, di Tommaso L, Lleo A, et al. High prevalence of porto-sinusoidal vascular disease in patients with constantly elevated gamma-glutamyl transferase levels. Liver Int 2022;42:1692-5.
28. De Gottardi A, Rautou P, Schouten J, et al. Porto-sinusoidal vascular disease: proposal and description of a novel entity. The Lancet Gastroenterology & Hepatology 2019;4:399-411.
29. Foddis R, Franzini M, Bonotti A, et al. Big and free fractions of gamma-glutamyltransferase: new diagnostic biomarkers for malignant mesothelioma? Diagnostics (Basel) 2022;12:311.
30. Greb D, Hebeisen M, Matter A, Opitz I, Lauk O. Prospective validation and extension of the multimodality prognostic score for the treatment allocation of pleural mesothelioma patients. Eur J Cardiothorac Surg 2022;62:ezac085.
31. Lonardo A, Lombardini S, Scaglioni F, et al. Hepatic steatosis and insulin resistance: does etiology make a difference? J Hepatol 2006;44:190-6.
32. Ballestri S, Zona S, Targher G, et al. Nonalcoholic fatty liver disease is associated with an almost twofold increased risk of incident type 2 diabetes and metabolic syndrome. Evidence from a systematic review and meta-analysis. J Gastroenterol Hepatol 2016;31:936-44.
33. Chen SC, Tsai SP, Jhao JY, Jiang WK, Tsao CK, Chang LY. Liver fat, hepatic enzymes, alkaline phosphatase and the risk of incident type 2 diabetes: a prospective study of 132,377 adults. Sci Rep 2017;7:4649.
34. Klaassen G, Corpeleijn E, Deetman NPE, Navis GJ, Bakker SJL, Zelle DM. Liver enzymes and the development of posttransplantation diabetes mellitus in renal transplant recipients. Transplant Direct 2017;3:e208.
35. Lallukka S, Yki-Järvinen H. Non-alcoholic fatty liver disease and risk of type 2 diabetes. Best Pract Res Clin Endocrinol Metab 2016;30:385-95.
36. Arrese M, Arab JP, Barrera F, Kaufmann B, Valenti L, Feldstein AE. Insights into nonalcoholic fatty-liver disease heterogeneity. Semin Liver Dis 2021;41:421-34.
37. Krawczyk M, Liebe R, Maier IB, Engstler AJ, Lammert F, Bergheim I. The frequent adiponutrin (pnpla3) variant p.ile148met is associated with early liver injury: analysis of a german pediatric cohort. Gastroenterol Res Pract 2015;2015:205079.
38. Zhao W, Tong J, Liu J, Liu J, Li J, Cao Y. The Dose-response relationship between gamma-glutamyl transferase and risk of diabetes mellitus using publicly available data: a longitudinal study in Japan. Int J Endocrinol 2020;2020:5356498.
39. Hua S, Qi Q, Kizer JR, et al. Association of liver enzymes with incident diabetes in US Hispanic/Latino adults. Diabet Med 2021;38:e14522.
40. Park JY, Han K, Kim HS, et al. Cumulative exposure to high γ-glutamyl transferase level and risk of diabetes: a nationwide population-based study. Endocrinol Metab (Seoul) 2022;37:272-80.
41. Wang N, Xu Z, Pei D. Association of distinct γ-glutamyltransferase trajectories with incident hyperglycemia using latent class growth mixture modeling: a longitudinal cohort study of Chinese adults. Diabetes Res Clin Pract 2022;190:109968.
42. Bertoli S, Leone A, Vignati L, et al. Metabolic correlates of subcutaneous and visceral abdominal fat measured by ultrasonography: a comparison with waist circumference. Nutr J 2016;15:2.
44. Chait A, den Hartigh LJ. Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front Cardiovasc Med 2020;7:22.
45. Chen LW, Huang MS, Shyu YC, Chien RN. Gamma-glutamyl transpeptidase elevation is associated with metabolic syndrome, hepatic steatosis, and fibrosis in patients with nonalcoholic fatty liver disease: a community-based cross-sectional study. Kaohsiung J Med Sci 2021;37:819-27.
46. Coccia F, Testa M, Guarisco G, et al. Noninvasive assessment of hepatic steatosis and fibrosis in patients with severe obesity. Endocrine 2020;67:569-78.
47. Foschi FG, Domenicali M, Giacomoni P, et al. Bagnacavallo Study Group. Is there an association between commonly employed biomarkers of liver fibrosis and liver stiffness in the general population? Ann Hepatol 2020;19:380-7.
48. Willis BH. Spectrum bias--why clinicians need to be cautious when applying diagnostic test studies. Fam Pract 2008;25:390-6.
49. Kozakova M, Gastaldelli A, Morizzo C, et al. RISC Investigators. Gamma-glutamyltransferase, arterial remodeling and prehypertension in a healthy population at low cardiometabolic risk. J Hum Hypertens 2021;35:334-42.
50. Zinterl I, Ittermann T, Schipf S, et al. Low cardiopulmonary fitness is associated with higher liver fat content and higher gamma-glutamyltransferase concentrations in the general population - “The Sedentary's Liver”. Liver Int 2022;42:585-94.
51. Lonardo A, Ballestri S. Perspectives of nonalcoholic fatty liver disease research: a personal point of view. Explor Med ;2020:1:85-107.
52. Lonardo A, Byrne CD, Targher G. Precision medicine approaches in metabolic disorders and target organ damage: where are we now, and where are we going? Metab Target Organ Damage 2021;1:3.
53. Lonardo A, Arab JP, Arrese M. Perspectives on precision medicine approaches to NAFLD diagnosis and management. Adv Ther 2021;38:2130-58.
54. Pennisi G, Enea M, Romero-Gomez M, et al. Liver-related and extrahepatic events in patients with non-alcoholic fatty liver disease: a retrospective competing risks analysis. Aliment Pharmacol Ther 2022;55:604-15.
55. Liu Z, He H, Dai Y, et al. Comparison of the diagnostic value between triglyceride-glucose index and triglyceride to high-density lipoprotein cholesterol ratio in metabolic-associated fatty liver disease patients: a retrospective cross-sectional study. Lipids Health Dis 2022;21:55.
56. Guan L, Zhang X, Tian H, et al. Prevalence and risk factors of metabolic-associated fatty liver disease during 2014-2018 from three cities of Liaoning Province: an epidemiological survey. BMJ Open 2022;12:e047588.
57. Ndrepepa G, Kastrati A. Gamma-glutamyl transferase and cardiovascular disease. Ann Transl Med 2016;4:481.
58. Kunutsor SK, Bakker SJ, Kootstra-Ros JE, Gansevoort RT, Dullaart RP. Circulating gamma glutamyltransferase and prediction of cardiovascular disease. Atherosclerosis 2015;238:356-64.
59. Ndrepepa G, Braun S, Schunkert H, Laugwitz KL, Kastrati A. Gamma-glutamyl transferase and prognosis in patients with coronary artery disease. Clin Chim Acta 2016;452:155-60.
60. Kim YG, Han K, Jeong JH, et al. Metabolic syndrome, gamma-glutamyl transferase, and risk of sudden cardiac death. J Clin Med 2022;11:1781.
61. Liu CF, Zhou WN, Guo TM, Hou AC, Wei YJ. Liver enzymes and the risk of atrial fibrillation: a meta-analysis of prospective cohort studies. Genet Test Mol Biomarkers 2019;23:865-70.
62. Dhingra R, Gona P, Wang TJ, Fox CS, D'Agostino RB Sr, Vasan RS. Serum gamma-glutamyl transferase and risk of heart failure in the community. Arterioscler Thromb Vasc Biol 2010;30:1855-60.
63. Wannamethee SG, Whincup PH, Shaper AG, Lennon L, Sattar N. Γ-glutamyltransferase, hepatic enzymes, and risk of incident heart failure in older men. Arterioscler Thromb Vasc Biol 2012;32:830-5.
64. Wang Y, Tuomilehto J, Jousilahti P, et al. Serum γ-glutamyltransferase and the risk of heart failure in men and women in Finland. Heart 2013;99:163-7.
65. Hong SH, Lee JS, Kim JA, et al. Gamma-glutamyl transferase variability and the risk of hospitalisation for heart failure. Heart 2020;106:1080-6.
66. Ndrepepa G, Colleran R, Kastrati A. Gamma-glutamyl transferase and the risk of atherosclerosis and coronary heart disease. Clin Chim Acta 2018;476:130-8.
67. Bijnens EM, Derom C, Thiery E, et al. Serum gamma-glutamyl transferase, a marker of alcohol intake, is associated with telomere length and cardiometabolic risk in young adulthood. Sci Rep 2021;11:12407.
68. Gansevoort RT, Correa-rotter R, Hemmelgarn BR, et al. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. The Lancet 2013;382:339-52.
69. Mantovani A, Petracca G, Beatrice G, et al. Non-alcoholic fatty liver disease and risk of incident chronic kidney disease: an updated meta-analysis. Gut 2022;71:156-62.
70. Fan Y, Jin X, Man C, Gong D. Association of serum gamma-glutamyltransferase with chronic kidney disease risk: a meta-analysis. Free Radic Res 2018;52:819-25.
71. Li J, O W, Li W, Jiang ZG, Ghanbari HA. Oxidative stress and neurodegenerative disorders. Int J Mol Sci 2013;14:24438-75.
72. Yoo D, Kim R, Jung YJ, Han K, Shin CM, Lee JY. Serum gamma-glutamyltransferase activity and Parkinson’s disease risk in men and women. Sci Rep 2020;10:1258.
73. Lee YB, Han K, Park S, et al. Gamma-glutamyl transferase variability and risk of dementia: a nationwide study. Int J Geriatr Psychiatry 2020;35:1105-14.
74. Tang Z, Chen X, Zhang W, et al. Association between gamma-glutamyl transferase and mild cognitive impairment in Chinese women. Front Aging Neurosci 2021;13:630409.
75. Kunutsor SK, Laukkanen JA, Burgess S. Genetically elevated gamma-glutamyltransferase and Alzheimer’s disease. Exp Gerontol 2018;106:61-6.
76. Reis GS, Augusto VS, Silveira AP, et al. Oxidative-stress biomarkers in patients with pulmonary hypertension. Pulm Circ 2013;3:856-61.
77. Lu GH, Gong SG, Li C, et al. Prognostic value of gamma-glutamyltransferase in male patients with idiopathic pulmonary arterial hypertension. Front Cardiovasc Med 2020;7:580908.
78. Yogeswaran A, Tello K, Lund J, et al. Risk assessment in pulmonary hypertension based on routinely measured laboratory parameters. J Heart Lung Transplant 2022;41:400-10.
79. Luo C, Wu W, Wu C, et al. Liver dysfunction in idiopathic pulmonary arterial hypertension: prevalence, characteristics and prognostic significance, a retrospective cohort study in China. BMJ Open 2021;11:e045165.
80. Du J, Ma YY, Yu CH, Li YM. Effects of pentoxifylline on nonalcoholic fatty liver disease: a meta-analysis. World J Gastroenterol 2014;20:569-77.
81. Franzini M, Musetti V, Guarino D, et al. γ-Glutamyltransferase fractions in obese subjects with type 2 diabetes: relation to insulin sensitivity and effects of bariatric surgery. Obes Surg 2018;28:1363-71.
82. Lainé F, Ruivard M, Loustaud-Ratti V, et al. Study Group. Metabolic and hepatic effects of bloodletting in dysmetabolic iron overload syndrome: a randomized controlled study in 274 patients. Hepatology 2017;65:465-74.
83. Ma Q, Liao X, Shao C, et al. Normalization of γ-glutamyl transferase levels is associated with better metabolic control in individuals with nonalcoholic fatty liver disease. BMC Gastroenterol 2021;21:215.
84. Malik A, Nadeem M, Malik MI. Efficacy of elafibranor in patients with liver abnormalities especially non-alcoholic steatohepatitis: a systematic review and meta-analysis. Clin J Gastroenterol 2021;14:1579-86.
85. Pastori D, Pani A, Di Rocco A, et al. Statin liver safety in non-alcoholic fatty liver disease: A systematic review and metanalysis. Br J Clin Pharmacol 2022;88:441-51.
86. Bertolini A, van de Peppel IP, Bodewes FAJA, et al. Abnormal liver function tests in patients with COVID-19: relevance and potential pathogenesis. Hepatology 2020;72:1864-72.
87. Alroomi M, Rajan R, Alsaber A, et al. In-hospital mortality in SARS-CoV-2 stratified by gamma-glutamyl transferase levels. J Clin Lab Anal 2022;36:e24291.
88. Liu J, Yu C, Yang Q, et al. The clinical implication of gamma-glutamyl transpeptidase in COVID-19. Liver Res 2021;5:209-16.
89. Ponziani FR, Del Zompo F, Nesci A, et al. “Gemelli against COVID-19” group. Liver involvement is not associated with mortality: results from a large cohort of SARS-CoV-2-positive patients. Aliment Pharmacol Ther 2020;52:1060-8.
90. Wanner N, Andrieux G, Badia-I-Mompel P, et al. Molecular consequences of SARS-CoV-2 liver tropism. Nat Metab 2022;4:310-9.
91. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004;203:631-7.
92. Bedogni G, Bellentani S, Miglioli L, et al. The fatty liver index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol 2006;6:33.