REFERENCES

1. Harper G, Sommerville R, Kendrick E, et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019;575:75-86.

2. Liu H, Zhu Z, Yan Q, et al. A disordered rock salt anode for fast-charging lithium-ion batteries. Nature 2020;585:63-7.

3. Zhou Y, Su M, Yu X, et al. Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery. Nat Nanotechnol 2020;15:224-30.

4. Wang J, Fan L, Liu Z, et al. In situ alloying strategy for exceptional potassium ion batteries. ACS Nano 2019;13:3703-13.

5. Ge J, Fan L, Wang J, et al. MoSe2/N-doped carbon as anodes for potassium-ion batteries. Adv Energy Mater 2018;8:1801477.

6. Mu J, Zhao Z, Gao X, et al. Bimetallic PdFe3 nano-alloy with tunable electron configuration for boosting electrochemical nitrogen fixation. Adv Energy Mater 2023;14:2303558.

7. Zhang Q, Wang L, Wang J, et al. Low-temperature synthesis of edge-rich graphene paper for high-performance aluminum batteries. Energy Stor Mater 2018;15:361-7.

8. Zhao L, Gao X, Gu Q, et al. Realizing a dendrite-free metallic-potassium anode using reactive prewetting chemistry. eScience 2024;4:100201.

9. Hu Z, Hao J, Shen D, et al. Electro-spraying/spinning: a novel battery manufacturing technology. Green Energy Environ 2024;9:81-8.

10. Yu W, Ge J, Hu Y, et al. Hybrid high-performance aqueous batteries with potassium-based cathode||zinc metal anode. Sci China Mater 2023;66:923-31.

11. Wang J, Wang B, Lu B. Nature of novel 2D van der Waals heterostructures for superior potassium ion batteries. Adv Energy Mater 2020;10:2000884.

12. Li L, Liu L, Hu Z, et al. Understanding high-rate K+-solvent co-intercalation in natural graphite for potassium-ion batteries. Angew Chem Int Ed 2020;59:12917-24.

13. Wang L, Menakath A, Han F, et al. Identifying the components of the solid-electrolyte interphase in Li-ion batteries. Nat Chem 2019;11:789-96.

14. Mackanic DG, Yan X, Zhang Q, et al. Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors. Nat Commun 2019;10:5384.

15. Manthiram A. A reflection on lithium-ion battery cathode chemistry. Nat Commun 2020;11:1550.

16. Wang J, Zhang G, Liu Z, et al. Li3V(MoO4)3 as a novel electrode material with good lithium storage properties and improved initial coulombic efficiency. Nano Energy 2018;44:272-8.

17. Liu Z, Wang J, Ding H, Chen S, Yu X, Lu B. Carbon nanoscrolls for aluminum battery. ACS Nano 2018;12:8456-66.

18. Liu Z, Wang J, Jia X, et al. Graphene armored with a crystal carbon shell for ultrahigh-performance potassium ion batteries and aluminum batteries. ACS Nano 2019;13:10631-42.

19. Zhao L, Gao X, Mu J, et al. Durable integrated K-metal anode with enhanced mass transport through potassiphilic porous interconnected mediator. Adv Funct Mater 2023;33:2304292.

20. Liu Z, Wang J, Lu B. Plum pudding model inspired KVPO4F@3DC as high-voltage and hyperstable cathode for potassium ion batteries. Sci Bull 2020;65:1242-51.

21. Guo YJ, Wang PF, Niu YB, et al. Boron-doped sodium layered oxide for reversible oxygen redox reaction in Na-ion battery cathodes. Nat Commun 2021;12:5267.

22. Ji H, Ji W, Xue H, et al. Synergistic activation of anionic redox via cosubstitution to construct high-capacity layered oxide cathode materials for sodium-ion batteries. Sci Bull 2023;68:65-76.

23. Huang Z, Zhang X, Zhao X, et al. Hollow Na0.62K0.05Mn0.7Ni0.2Co0.1O2 polyhedra with exposed stable {001} facets and K riveting for sodium-ion batteries. Sci China Mater 2023;66:79-87.

24. Liu Q, Hu Z, Chen M, et al. Recent progress of layered transition metal oxide cathodes for sodium-ion batteries. Small 2019;15:e1805381.

25. Shi Q, Qi R, Feng X, et al. Niobium-doped layered cathode material for high-power and low-temperature sodium-ion batteries. Nat Commun 2022;13:3205.

26. Wang C, Liu L, Zhao S, et al. Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery. Nat Commun 2021;12:2256.

27. Wang F, Zhang J, Lu H, et al. Production of gas-releasing electrolyte-replenishing Ah-scale zinc metal pouch cells with aqueous gel electrolyte. Nat Commun 2023;14:4211.

28. Xu GL, Liu X, Zhou X, et al. Native lattice strain induced structural earthquake in sodium layered oxide cathodes. Nat Commun 2022;13:436.

29. Deng T, Ji X, Zou L, et al. Interfacial-engineering-enabled practical low-temperature sodium metal battery. Nat Nanotechnol 2022;17:269-77.

30. Zhao Y, Kang Y, Wozny J, et al. Recycling of sodium-ion batteries. Nat Rev Mater 2023;8:623-34.

31. Zuo W, Innocenti A, Zarrabeitia M, Bresser D, Yang Y, Passerini S. Layered oxide cathodes for sodium-ion batteries: storage mechanism, electrochemistry, and techno-economics. ACC Chem Res 2023;56:284-96.

32. Cao X, Li H, Qiao Y, et al. Stabilizing reversible oxygen redox chemistry in layered oxides for sodium-ion batteries. Adv Energy Mater 2020;10:1903785.

33. Hu Z, Geng C, Wang L, Lv W, Yang Q. Revisiting the roles of carbon in the catalysis of lithium-sulfur batteries. Adv Energy Sustain Res 2024;5:2300148.

34. Xiao Y, Abbasi NM, Zhu Y, et al. Layered oxide cathodes promoted by structure modulation technology for sodium-ion batteries. Adv Funct Mater 2020;30:2001334.

35. Hu HY, Wang H, Zhu YF, et al. A universal strategy based on bridging microstructure engineering and local electronic structure manipulation for high-performance sodium layered oxide cathodes. ACS Nano 2023;17:15871-82.

36. Liu S, Wan J, Ou M, et al. Regulating Na occupation in P2-type layered oxide cathode for all-climate sodium-ion batteries. Adv Energy Mater 2023;13:2203521.

37. Shen L, Wang Y, Lv H, et al. Ultrathin Ti2Nb2O9 nanosheets with pseudocapacitive properties as superior anode for sodium-ion batteries. Adv Mater 2018;30:e1804378.

38. Chu S, Kim D, Choi G, et al. Revealing the origin of transition-metal migration in layered sodium-ion battery cathodes: random Na extraction and Na-free layer formation. Angew Chem Int Ed 2023;62:e202216174.

39. Wang P, You Y, Yin Y, Guo Y. Layered oxide cathodes for sodium-ion batteries: phase transition, air stability, and performance. Adv Energy Mater 2018;8:1701912.

40. Xiao Y, Wang P, Yin Y, et al. A layered-tunnel intergrowth structure for high-performance sodium-ion oxide cathode. Adv Energy Mater 2018;8:1800492.

41. Zhao C, Ding F, Lu Y, Chen L, Hu YS. High-entropy layered oxide cathodes for sodium-ion batteries. Angew Chem Int Ed 2020;59:264-9.

42. Huang Q, Wang M, Zhang L, et al. Shear-resistant interface of layered oxide cathodes for sodium ion batteries. Energy Stor Mater 2022;45:389-98.

43. Lin C, Dai P, Wang X, et al. P2/O3 biphase integration promoting the enhancement of structural stability for sodium layered oxide cathode. Chem Eng J 2024;480:147964.

44. Mu J, Cai T, Dong W, Zhou C, Han Z, Huang F. Biphasic high-entropy layered oxide as a stable and high-rate cathode for sodium-ion batteries. Chem Eng J 2023;471:144403.

45. Wang SS, Liu ZM, Gao XW, Wang XC, Chen H, Luo WB. Layer-structured multitransition-metal oxide cathode materials for potassium-ion batteries with long cycling lifespan and superior rate capability. ACS Appl Mater Interfaces 2023;15:57165-73.

46. Mu J, Gao X, Liu Z, et al. Boosting nitrogen electrocatalytic fixation by three-dimensional TiO2-N nanowire arrays. J Energy Chem 2022;75:293-300.

47. Wang D, Liu Z, Gao X, Gu Q, Zhao L, Luo W. Massive anionic fluorine substitution two-dimensional δ-MnO2 nanosheets for high-performance aqueous zinc-ion battery. J Energy Stor 2023;72:108740.

48. Li J, Mu J, Liu Z, et al. Boosting potassium-based dual ion battery with high energy density and long lifespan by red phosphorous. J Power Sources 2023;571:233054.

49. Han MH, Gonzalo E, Singh G, Rojo T. A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ Sci 2015;8:81-102.

50. Lin C, Liu H, Kang J, et al. In-situ X-ray studies of high-entropy layered oxide cathode for sodium-ion batteries. Energy Stor Mater 2022;51:159-71.

51. Zhang G, Li J, Fan Y, et al. Suppressed P2-P2′ phase transition of Fe/Mn-based layered oxide cathode for high-performance sodium-ion batteries. Energy Stor Mater 2022;51:559-67.

52. Yu Y, Ning D, Li Q, et al. Revealing the anionic redox chemistry in O3-type layered oxide cathode for sodium-ion batteries. Energy Stor Mater 2021;38:130-40.

53. Zhong L, Qiu X, Yang S, Sun S, Chen L, Zhang W. Supermolecule-regulated synthesis strategy of general biomass-derived highly nitrogen-doped carbons toward potassium-ion hybrid capacitors with enhanced performances. Energy Stor Mater 2023;61:102887.

54. Shi C, Wang L, Chen X, et al. Challenges of layer-structured cathodes for sodium-ion batteries. Nanoscale Horiz 2022;7:338-51.

55. Katcho NA, Carrasco J, Saurel D, et al. Origins of bistability and Na ion mobility difference in P2- and O3-Na2/3Fe2/3Mn1/3O2 cathode polymorphs. Adv Energy Mater 2017;7:1601477.

56. Lee E, Lu J, Ren Y, et al. Layered P2/O3 intergrowth cathode: toward high power Na-ion batteries. Adv Energy Mater 2014;4:1400458.

57. Zhao W, Tsuchiya Y, Yabuuchi N. Influence of synthesis conditions on electrochemical properties of P2-type Na2/3Fe2/3Mn1/3O2 for rechargeable Na batteries. Small Methods 2019;3:1800032.

58. Cao Y, Zhang Q, Wei Y, et al. A water stable, near-zero-strain O3-layered titanium-based anode for long cycle sodium-ion battery. Adv Funct Mater 2020;30:1907023.

59. Yang L, del Amo JML, Shadike Z, et al. A Co- and Ni-Free P2/O3 biphasic lithium stabilized layered oxide for sodium-ion batteries and its cycling behavior. Adv Funct Mater 2020;30:2003364.

60. Zhao C, Avdeev M, Chen L, Hu YS. An O3-type oxide with low sodium content as the phase-transition-free anode for sodium-ion batteries. Angew Chem Int Ed 2018;57:7056-60.

61. Zhu YF, Xiao Y, Hua WB, et al. Manipulating layered P2@P3 integrated spinel structure evolution for high-performance sodium-ion batteries. Angew Chem Int Ed 2020;59:9299-304.

62. Liu Z, Zhou C, Liu J, Yang L, Liu J, Zhu M. Phase tuning of P2/O3-type layered oxide cathode for sodium ion batteries via a simple Li/F co-doping route. Chem Eng J 2022;431:134273.

63. Maughan PA, Naden AB, Irvine JTS, Armstrong AR. Manipulating O3/P2 phase ratio in bi-phasic sodium layered oxides via ionic radius control. Commun Mater 2023;4:6.

64. Li R, Liu Y, Wang Z, Li J. A P2/O3 biphasic cathode material with highly reversibility synthesized by Sn-substitution for Na-ion batteries. Electrochim Acta 2019;318:14-22.

65. Huang J, Li W, Ye D, Xu L, Wu W, Wu X. Designing ultrastable P2/O3-type layered oxides for sodium ion batteries by regulating Na distribution and oxygen redox chemistry. J Energy Chem 2024;94:466-76.

66. Zhang L, Guan C, Zheng J, et al. Rational design of intergrowth P2/O3 biphasic layered structure with reversible anionic redox chemistry and structural evolution for Na-ions batteries. Sci Bull 2023;68:180-91.

67. Sharma N, Bahri OKA, Han MH, Gonzalo E, Pramudita JC, Rojo T. Comparison of the structural evolution of the O3 and P2 phases of Na2/3Fe2/3Mn1/3O2 during electrochemical cycling. Electrochim Acta 2016;203:189-97.

68. Xu G, Amine R, Xu Y, et al. Insights into the structural effects of layered cathode materials for high voltage sodium-ion batteries. Energy Environ Sci 2017;10:1677-93.

69. Zhou D, Huang W, Lv X, Zhao F. A novel P2/O3 biphase Na0.67Fe0.425Mn0.425Mg0.15O2 as cathode for high-performance sodium-ion batteries. J Power Sources 2019;421:147-55.

70. Zhao J, Zhang X, Wang J, Yang X, Deng J, Wang Y. P2-type Na0.59Co0.20Mn0.77Mo0.03O2 cathode with excellent cycle stability for sodium-ion batteries. J Solid State Electrochem 2020;24:1349-61.

71. Bianchini M, Wang J, Clément RJ, et al. The interplay between thermodynamics and kinetics in the solid-state synthesis of layered oxides. Nat Mater 2020;19:1088-95.

72. Wang JE, Kim H, Jung YH, Kim DK, Kim DJ. Designing high energy sodium-ion battery cathodes by utilizing P2/O3 biphasic structure and lithium honeycomb ordering. Small 2021;17:e2100146.

73. Guo S, Liu P, Yu H, et al. A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries. Angew Chem Int Ed 2015;54:5894-9.

74. Qi X, Liu L, Song N, et al. Design and comparative study of O3/P2 hybrid structures for room temperature sodium-ion batteries. ACS Appl Mater Interfaces 2017;9:40215-23.

75. Zhou D, Zeng C, Ling D, et al. Sustainable alternative cathodes of sodium-ion batteries using hybrid P2/O3 phase Na0.67Fe0.5Mn0.5-xMgxO2. J Alloys Compd 2023;931:167567.

76. Zhang P, Zhang G, Liu Y, et al. Constructing P2/O3 biphasic structure of Fe/Mn-based layered oxide cathode for high-performance sodium-ion batteries. J Colloid Interface Sci 2024;654:1405-16.

77. Wang K, Wu Z, Melinte G, et al. Preparation of intergrown P/O-type biphasic layered oxides as high-performance cathodes for sodium ion batteries. J Mater Chem A 2021;9:13151-60.

78. Hong J, Xiao S, Deng L, Lan T, He G. Li-free P2/O3 biphasic Na0.73Ni0.4Mn0.4Ti0.2O2 as a cathode material for sodium-ion batteries. Ionics 2020;26:3911-7.

79. Xu W, Gao X, Zhou Y, Zou G, Hou H, Ji X. Sodium de-insertion processes in single Na TMO2 particles studied by an electrochemical collision method: O3 phases versus P2 phases. Electrochem Commun 2021;125:107000.

80. Zhou P, Che Z, Liu J, et al. High-entropy P2/O3 biphasic cathode materials for wide-temperature rechargeable sodium-ion batteries. Energy Stor Mater 2023;57:618-27.

81. Chen C, Huang W, Li Y, et al. P2/O3 biphasic Fe/Mn-based layered oxide cathode with ultrahigh capacity and great cyclability for sodium ion batteries. Nano Energy 2021;90:106504.

82. Huang Q, Liu J, Xu S, et al. Roles of coherent interfaces on electrochemical performance of sodium layered oxide cathodes. Chem Mater 2018;30:4728-37.

83. Yu L, Cheng Z, Xu K, et al. Interlocking biphasic chemistry for high-voltage P2/O3 sodium layered oxide cathode. Energy Stor Mater 2022;50:730-9.

84. Hu B, Geng F, Zhao C, et al. Deciphering the origin of high electrochemical performance in a novel Ti-substituted P2/O3 biphasic cathode for sodium-ion batteries. ACS Appl Mater Interfaces 2020;12:41485-94.

85. Gao G, Tie D, Ma H, et al. Interface-rich mixed P2 + T phase NaxCo0.1Mn0.9O2 (0.44 ≤ x ≤ 0.7) toward fast and high capacity sodium storage. J Mater Chem A 2018;6:6675-84.

86. Zhang Z, Liu Y, Liu Z, et al. Dual-strategy of Cu-doping and O3 biphasic structure enables Fe/Mn-based layered oxide for high-performance sodium-ion batteries cathode. J Power Sources 2023;567:232930.

87. Feng J, Fang D, Yang Z, et al. A novel P2/O3 composite cathode toward synergistic electrochemical optimization for sodium ion batteries. J Power Sources 2023;553:232292.

88. Wang P, You Y, Yin Y, et al. Suppressing the P2-O2 Phase Transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries. Angew Chem Int Ed 2016;128:7571-5.

89. Wang QC, Meng JK, Yue XY, et al. Tuning P2-structured cathode material by Na-site Mg substitution for Na-ion batteries. J Am Chem Soc 2019;141:840-8.

90. Tao S, Zhou W, Wu D, et al. Insights into the Ti4+ doping in P2-type Na0.67Ni0.33Mn0.52Ti0.15O2 for enhanced performance of sodium-ion batteries. J Mater Sci Technol 2021;74:230-6.

91. Wang JZ, Teng YX, Su GQ, Bao S, Lu JL. A dual-modification strategy for P2-type layered oxide via bulk Mg/Ti co-substitution and MgO surface coating for sodium ion batteries. J Colloid Interface Sci 2022;608:3013-21.

92. Kaliyappan K, Liu J, Lushington A, Li R, Sun X. Highly stable Na2/3(Mn0.54Ni0.13Co0.13)O2 cathode modified by atomic layer deposition for sodium-ion batteries. ChemSusChem 2015;8:2537-43.

93. Liu Y, Fang X, Zhang A, et al. Layered P2-Na2/3[Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: the capacity decay mechanism and Al2O3 surface modification. Nano Energy 2016;27:27-34.

94. Li N, Ren J, Dang R, et al. Suppressing phase transition and improving electrochemical performances of O3-NaNi1/3Mn1/3Fe1/3O2 through ionic conductive Na2SiO3 coating. J Power Sources 2019;429:38-45.

95. Xue L, Bao S, Yan L, Zhang Y, Lu J, Yin Y. MgO-coated layered cathode oxide with enhanced stability for sodium-ion batteries. Front Energy Res 2022;10:847818.

96. Hwang J, Myung S, Choi JU, Yoon CS, Yashiro H, Sun Y. Resolving the degradation pathways of the O3-type layered oxide cathode surface through the nano-scale aluminum oxide coating for high-energy density sodium-ion batteries. J Mater Chem A 2017;5:23671-80.

97. Yang J, Lim J, Park M, et al. Thermally activated P2-O3 mixed layered cathodes toward synergistic electrochemical enhancement for Na ion batteries. Adv Energy Mater 2021;11:2102444.

98. Zuo W, Qiu J, Liu X, et al. Highly-stable P2-Na0.67MnO2 electrode enabled by lattice tailoring and surface engineering. Energy Stor Mater 2020;26:503-12.

99. Xiao Y, Wang HR, Hu HY, et al. Formulating high-rate and long-cycle heterostructured layered oxide cathodes by local chemistry and orbital hybridization modulation for sodium-ion batteries. Adv Mater 2022;34:e2202695.

100. Jiang N, Liu Q, Wang J, et al. Tailoring P2/P3 biphases of layered NaxMnO2 by Co substitution for high-performance sodium-ion battery. Small 2021;17:e2007103.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/