REFERENCES

1. Zhao Y, Jin B, Zheng Y, Jin H, Jiao Y, Qiao S. Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis. Adv Energy Mater 2018;8:1801926.

2. Li L, Tang C, Jin H, Davey K, Qiao S. Main-group elements boost electrochemical nitrogen fixation. Chem 2021;7:3232-55.

3. Jacobson MZ, von Krauland A, Coughlin SJ, et al. Low-cost solutions to global warming, air pollution, and energy insecurity for 145 countries. Energy Environ Sci 2022;15:3343-59.

4. Ding Y, Mu C, Wu T, et al. Increasing cryospheric hazards in a warming climate. Earth Sci Rev 2021;213:103500.

5. Yao D, Tang C, Wang P, et al. Electrocatalytic green ammonia production beyond ambient aqueous nitrogen reduction. Chem Eng Sci 2022;257:117735.

6. Yu H, Wan J, Goodsite M, Jin H. Advancing direct seawater electrocatalysis for green and affordable hydrogen. One Earth 2023;6:267-77.

7. Chen P, Hou J, Wang L. Metal-organic framework-tailored perovskite solar cells. Microstructures 2022;2:2022014.

8. Ragauskas AJ, Williams CK, Davison BH, et al. The path forward for biofuels and biomaterials. Science 2006;311:484-9.

9. Armand M, Tarascon JM. Building better batteries. Nature 2008;451:652-7.

10. Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science 2011;334:928-35.

11. Sun H, Mei L, Liang J, et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 2017;356:599-604.

12. Chen K, Xue D. Materials chemistry toward electrochemical energy storage. J Mater Chem A 2016;4:7522-37.

13. Ji X, Lee KT, Nazar LF. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 2009;8:500-6.

14. Sumboja A, Liu J, Zheng WG, Zong Y, Zhang H, Liu Z. Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design. Chem Soc Rev 2018;47:5919-45.

15. Zhang L, Zhou K, Wei Q, et al. Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage. Appl Energy 2019;233-4:208-19.

16. Raj CJ, Manikandan R, Thondaiman P, et al. Sonoelectrochemical exfoliation of graphene in various electrolytic environments and their structural and electrochemical properties. Carbon 2021;184:266-76.

17. Lee SJ, Kim HJ, Hwang TH, et al. Delicate structural control of Si-SiOx-C composite via high-speed spray pyrolysis for Li-ion battery anodes. Nano Lett 2017;17:1870-6.

18. Zhang X, Zhang W, Zhang L, et al. Single-pot solvothermal strategy toward support-free nanostructured LiBH4 featuring 12 wt% reversible hydrogen storage at 400 °C. Chem Eng J 2022;428:132566.

19. Li Y, Liu H, Xu J, et al. Hierarchical nanostructure-tuned super-high electrochemical stability of nickel cobalt sulfide. J Mater Chem A 2018;6:19788-97.

20. Carriazo D, Rossell MD, Zeng G, Bilecka I, Erni R, Niederberger M. Formation mechanism of LiFePO4 sticks grown by a microwave-assisted liquid-phase process. Small 2012;8:2231-8.

21. Wan J, Zhang G, Jin H, et al. Microwave-assisted synthesis of well-defined nitrogen doping configuration with high centrality in carbon to identify the active sites for electrochemical hydrogen peroxide production. Carbon 2022;191:340-9.

22. Fang G, Liu K, Fan M, et al. Unveiling the electron configuration-dependent oxygen evolution activity of 2D porous Sr-substituted LaFeO3 perovskite through microwave shock. Carbon Neutral 2023;2:709-20.

23. Strauss V, Marsh K, Kowal MD, El-Kady M, Kaner RB. A simple route to porous graphene from carbon nanodots for supercapacitor applications. Adv Mater 2018;30:1704449.

24. Jiang H, Li J, Xiao Z, et al. The rapid production of multiple transition metal carbides via microwave combustion under ambient conditions. Nanoscale 2020;12:16245-52.

25. Hu R, Wei L, Xian J, et al. Microwave shock process for rapid synthesis of 2D porous La0.2Sr0.8CoO3 perovskite as an efficient oxygen evolution reaction catalyst. Acta Physico Chim Sinica 2023;0:2212025.

26. Wan J, Huang L, Wu J, et al. Rapid synthesis of size-tunable transition metal carbide nanodots under ambient conditions. J Mater Chem A 2019;7:14489-95.

27. Xian J, Jiang H, Wu Z, et al. Microwave shock motivating the Sr substitution of 2D porous GdFeO3 perovskite for highly active oxygen evolution. J Energy Chem 2024;88:232-41.

28. Hu R, Jiang H, Xian J, et al. Microwave-pulse sugar-blowing assisted synthesis of 2D transition metal carbides for sustainable hydrogen evolution. Appl Catal B Environ 2022;317:121728.

29. Wang C, Xu J, Yuen M, et al. Hierarchical composite electrodes of nickel oxide nanoflake 3D graphene for high-performance pseudocapacitors. Adv Funct Mater 2014;24:6372-80.

30. Zhang Y, Yang S, Wang S, Liu X, Li L. Microwave/freeze casting assisted fabrication of carbon frameworks derived from embedded upholder in tremella for superior performance supercapacitors. Energy Stor Mater 2019;18:447-55.

31. Kheradmandfard M, Minouei H, Tsvetkov N, et al. Ultrafast green microwave-assisted synthesis of high-entropy oxide nanoparticles for Li-ion battery applications. Mater Chem Phys 2021;262:124265.

32. Zhang J, Yang Y, Zhang Z, Xu X, Wang X. Rapid synthesis of mesoporous NixCo3-x(PO4)2 hollow shells showing enhanced electrocatalytic and supercapacitor performance. J Mater Chem A 2014;2:20182-8.

33. Zheng W, Zhang P, Chen J, Tian WB, Zhang Y, Sun ZM. In situ synthesis of CNTs@Ti3C2 hybrid structures by microwave irradiation for high-performance anodes in lithium ion batteries. J Mater Chem A 2018;6:3543-51.

34. Wan J, Yao X, Gao X, et al. Microwave combustion for modification of transition metal oxides. Adv Funct Mater 2016;26:7263-70.

35. Wan J, Hu R, Li J, et al. A universal construction of robust interface between 2D conductive polymer and cellulose for textile supercapacitor. Carbohydr Polym 2022;284:119230.

36. Dias A, Bundaleska N, Felizardo E, et al. N-graphene-metal-oxide(sulfide) hybrid nanostructures: single-step plasma-enabled approach for energy storage applications. Chem Eng J 2022;430:133153.

37. Jessl S, Copic D, Engelke S, Ahmad S, De Volder M. Hydrothermal coating of patterned carbon nanotube forest for structured lithium-ion battery electrodes. Small 2019;15:e1901201.

38. Liu Q, Tan G, Wang P, et al. Revealing mechanism responsible for structural reversibility of single-crystal VO2 nanorods upon lithiation/delithiation. Nano Energy 2017;36:197-205.

39. Wang Z, Zhu Y, Qiao C, et al. Anionic Se-substitution toward high-performance CuS1-xSex nanosheet cathode for rechargeable magnesium batteries. Small 2019;15:e1902797.

40. Heuser S, Yang N, Hof F, Schulte A, Schönherr H, Jiang X. 3D 3C-SiC/graphene hybrid nanolaminate films for high-performance supercapacitors. Small 2018;14:e1801857.

41. Li N, Song H, Cui H, Wang C. Sn@graphene grown on vertically aligned graphene for high-capacity, high-rate, and long-life lithium storage. Nano Energy 2014;3:102-12.

42. Tsai W, Lin R, Murali S, et al. Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from -50 to 80 °C. Nano Energy 2013;2:403-11.

43. Su X, Ye C, Li X, et al. Heterogeneous stacking carbon films for optimized supercapacitor performance. Energy Stor Mater 2022;50:365-72.

44. Ji H, Liu C, Wang T, et al. Porous hybrid composites of few-layer MoS2 nanosheets embedded in a carbon matrix with an excellent supercapacitor electrode performance. Small 2015;11:6480-90.

45. Zhang W, Zheng Z, Lin L, et al. Ultrafast synthesis of graphene-embedded cyclodextrin-metal-organic framework for supramolecular selective absorbency and supercapacitor performance. Adv Sci 2023;10:e2304062.

46. Li C, Shen M, Hu B, et al. High-energy nanostructured Na3V2(PO4)2O1.6F1.4 cathodes for sodium-ion batteries and a new insight into their redox chemistry. J Mater Chem A 2018;6:8340-8.

47. Li N, Song H, Cui H, Yang G, Wang C. Self-assembled growth of Sn@CNTs on vertically aligned graphene for binder-free high Li-storage and excellent stability. J Mater Chem A 2014;2:2526-37.

48. Antitomaso P, Fraisse B, Stievano L, et al. SnSb electrodes for Li-ion batteries: the electrochemical mechanism and capacity fading origins elucidated by using operando techniques. J Mater Chem A 2017;5:6546-55.

49. Kumar A, Kuang Y, Liang Z, Sun X. Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: a review. Mater Today Nano 2020;11:100076.

50. Zhu YJ, Chen F. Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem Rev 2014;114:6462-555.

51. Mishra RR, Sharma AK. Microwave-material interaction phenomena: heating mechanisms, challenges and opportunities in material processing. Compos Part A Appl S 2016;81:78-97.

52. Zeng X, Cheng X, Yu R, Stucky GD. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 2020;168:606-23.

53. Schwenke AM, Hoeppener S, Schubert US. Synthesis and modification of carbon nanomaterials utilizing microwave heating. Adv Mater 2015;27:4113-41.

54. Kappe CO. Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 2004;43:6250-84.

55. Kitchen HJ, Vallance SR, Kennedy JL, et al. Modern microwave methods in solid-state inorganic materials chemistry: from fundamentals to manufacturing. Chem Rev 2014;114:1170-206.

56. Gabriel C, Gabriel S, Grant EH, Halstead BSJ, Mingos DMP. Dielectric parameters relevant to microwave dielectric heating. Chem Soc Rev 1998;27:213-24.

57. Baghbanzadeh M, Carbone L, Cozzoli PD, Kappe CO. Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew Chem Int Ed 2011;50:11312-59.

58. Wang J, Wu W, Kondo H, Fan T, Zhou H. Recent progress in microwave-assisted preparations of 2D materials and catalysis applications. Nanotechnology 2022;33:342002.

59. Zhu Y, Cao C, Zhang J, Xu X. Two-dimensional ultrathin ZnCo2O4 nanosheets: general formation and lithium storage application. J Mater Chem A 2015;3:9556-64.

60. Rafai S, Qiao C, Naveed M, et al. Microwave-anion-exchange route to ultrathin cobalt-nickel-sulfide nanosheets for hybrid supercapacitors. Chem Eng J 2019;362:576-87.

61. Wu Y, Cao T, Wang R, Meng F, Zhang J, Cao C. A general strategy for the synthesis of two-dimensional holey nanosheets as cathodes for superior energy storage. J Mater Chem A 2018;6:8374-81.

62. Li N, Liao S, Sun Y, Song HW, Wang CX. Uniformly dispersed self-assembled growth of Sb2O3/Sb@graphene nanocomposites on a 3D carbon sheet network for high Na-storage capacity and excellent stability. J Mater Chem A 2015;3:5820-8.

63. Alshareef SF, Alhebshi NA, Almashhori K, Alshaikheid HS, Al-Hazmi F. A ten-minute synthesis of α-Ni(OH)2 nanoflakes assisted by microwave on flexible stainless-steel for energy storage devices. Nanomaterials 2022;12:1911.

64. Fathy M, Hassan H, Hafez H, Soliman M, Abulfotuh F, Kashyout AEHB. Simple and fast microwave-assisted synthesis methods of nanocrystalline TiO2 and rGO materials for low-cost metal-free DSSC applications. ACS Omega 2022;7:16757-65.

65. Rao RP, Ramasubramanian B, Saritha R, Ramakrishna S. Microwave assisted synthesis for ϵ-MnO2 nanostructures on Ni foam as for rechargeable Li-O2 battery applications. Nano Express 2023;4:045004.

66. Iqbal M, Saykar NG, Mahapatra SK. Microwave-induced rapid synthesis of MoS2@Cellulose composites as an efficient electrode material for quasi-solid-state supercapacitor application. Adv Eng Mater 2023;25:2201544.

67. Soin N, Roy SS, Mitra SK, Thundat T, Mclaughlin JA. Nanocrystalline ruthenium oxide dispersed few layered graphene (FLG) nanoflakes as supercapacitor electrodes. J Mater Chem 2012;22:14944-50.

68. Wang W, Zhang N, Shi Z, et al. Preparation of Ni-Al layered double hydroxide hollow microspheres for supercapacitor electrode. Chem Eng J 2018;338:55-61.

69. Zhu J, Chen M, Wei H, et al. Magnetocapacitance in magnetic microtubular carbon nanocomposites under external magnetic field. Nano Energy 2014;6:180-92.

70. He G, Li L, Manthiram A. VO2/rGO nanorods as a potential anode for sodium- and lithium-ion batteries. J Mater Chem A 2015;3:14750-8.

71. Antiohos D, Romano MS, Razal JM, et al. Performance enhancement of single-walled nanotube-microwave exfoliated graphene oxide composite electrodes using a stacked electrode configuration. J Mater Chem A 2014;2:14835-43.

72. Murali S, Quarles N, Zhang LL, et al. Volumetric capacitance of compressed activated microwave-expanded graphite oxide (a-MEGO) electrodes. Nano Energy 2013;2:764-8.

73. Wang C, Chui Y, Ma R, et al. A three-dimensional graphene scaffold supported thin film silicon anode for lithium-ion batteries. J Mater Chem A 2013;1:10092-8.

74. Gupta KK, Li K, Balaji S, Kumar PS, Lu C. Microwave-assisted synthesis and electrochemical characterization of TiNb2O7 microspheres as anode materials for lithium-ion batteries. J Am Ceram Soc 2023;106:4192-201.

75. Zoller F, Peters K, Zehetmaier PM, et al. Making ultrafast high-capacity anodes for lithium-ion batteries via antimony doping of nanosized tin oxide/graphene composites. Adv Funct Mater 2018;28:1706529.

76. Wang Y, Zhang Y, Li H, et al. Realizing high reversible capacity: 3D intertwined CNTs inherently conductive network for CuS as an anode for lithium ion batteries. Chem Eng J 2018;332:49-56.

77. Örnek A. Positive effects of a particular type of microwave-assisted methodology on the electrochemical properties of olivine LiMPO4 (M= Fe, Co and Ni) cathode materials. Chem Eng J 2018;331:501-9.

78. Sahu SR, Rikka VR, Haridoss P, Chatterjee A, Gopalan R, Prakash R. A novel α-MoO3/single-walled carbon nanohorns composite as high-performance anode material for fast-charging lithium-ion battery. Adv Energy Mater 2020;10:2001627.

79. Tian Y, Liu X, Cao X, et al. Microwave-assisted synthesis of 1T MoS2/Cu nanowires with enhanced capacity and stability as anode for LIBs. Chem Eng J 2019;374:429-36.

80. Yin X, Chen X, Sun W, Lv L, Wang Y. Revealing the effect of cobalt-doping on Ni/Mn-based coordination polymers towards boosted Li-storage performances. Energy Stor Mater 2020;25:846-57.

81. Cheng Y, Pandey RK, Li Y, et al. Conducting nitrogen-incorporated ultrananocrystalline diamond coating for highly structural stable anode materials in lithium ion battery. Nano Energy 2020;74:104811.

82. Tang X, Wang H, Fan J, Lv L, Sun W, Wang Y. CNT boosted two-dimensional flaky metal-organic nanosheets for superior lithium and potassium storage. Chem Eng J 2022;430:133023.

83. Zhou Y, Zhang X, Liu Y, et al. A high-temperature Na-ion battery: boosting the rate capability and cycle life by structure engineering. Small 2020;16:e1906669.

84. Yao X, Ke Y, Ren W, et al. Defect-rich soft carbon porous nanosheets for fast and high-capacity sodium-ion storage. Adv Energy Mater 2019;9:1803260.

85. Lu X, Wang Z, Liu K, et al. Hierarchical Sb2MoO6 microspheres for high-performance sodium-ion battery anode. Energy Stor Mater 2019;17:101-10.

86. Hou Y, Chang K, Wang Z, et al. Rapid microwave-assisted refluxing synthesis of hierarchical mulberry-shaped Na3V2(PO4)2O2F@C as high performance cathode for sodium & lithium-ion batteries. Sci China Mater 2019;62:474-86.

87. Martin A, Doublet M, Kemnitz E, Pinna N. Reversible sodium and lithium insertion in iron fluoride perovskites. Adv Funct Mater 2018;28:1802057.

88. Guan J, Huang Q, Shao L, et al. Polyanion-type Na3V2(PO4)2F3@rGO with high-voltage and ultralong-life for aqueous zinc ion batteries. Small 2023;19:e2207148.

89. Zhao W, Fee J, Khanna H, et al. A two-electron transfer mechanism of the Zn-doped δ-MnO2 cathode toward aqueous Zn-ion batteries with ultrahigh capacity. J Mater Chem A 2022;10:6762-71.

90. Kim S, Soundharrajan V, Kim S, et al. Microwave-assisted rapid synthesis of NH4V4O10 layered oxide: a high energy cathode for aqueous rechargeable zinc ion batteries. Nanomaterials 2021;11:1905.

91. Jia D, Zheng K, Song M, et al. VO2·0.2H2O nanocuboids anchored onto graphene sheets as the cathode material for ultrahigh capacity aqueous zinc ion batteries. Nano Res 2020;13:215-24.

92. Chen S, Zhang Y, Geng H, Yang Y, Rui X, Li CC. Zinc ions pillared vanadate cathodes by chemical pre-intercalation towards long cycling life and low-temperature zinc ion batteries. J Power Sources 2019;441:227192.

93. Xia C, Guo J, Lei Y, Liang H, Zhao C, Alshareef HN. Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv Mater 2018;30:1907798.

94. Zhao T, Liu C, Meng T, et al. Vacancy-clusters in-situ induced via microwave-irradiation enable high-durability and capacitor-level rate li-ion storage. Chem Eng J 2023;466:143053.

95. Jiang H, Xian J, Hu R, et al. Microwave discharge for rapid introduction of bimetallic-synergistic configuration to conductive catecholate toward long-term supercapacitor. Chem Eng J 2023;455:140804.

96. Huang N, Sun Y, Liu S, et al. Microwave-assisted rational designed CNT-Mn3O4/CoWO4 hybrid nanocomposites for high performance battery-supercapacitor hybrid device. Small 2023;19:e2300696.

97. Sun Y, Huang N, Zhao D, et al. Microwave-assisted in-situ isomorphism via introduction of Mn into CoCo2O4 for battery-supercapacitor hybrid electrode material. Chem Eng J 2022;430:132729.

98. Chen Y, Ni D, Yang X, Liu C, Yin J, Cai K. Microwave-assisted synthesis of honeycomblike hierarchical spherical Zn-doped Ni-MOF as a high-performance battery-type supercapacitor electrode material. Electrochim Acta 2018;278:114-23.

99. Kaplan C, Hidalgo MFV, Zuba MJ, Chernova NA, Piper LFJ, Whittingham MS. Microwave-assisted solvothermal synthesis of LiVyM1-yOPO4 (M = Mn, Cr, Ti, Zr, Nb, Mo, W) cathode materials for lithium-ion batteries. J Mater Chem A 2021;9:6933-44.

100. Wan J, Huang L, Wu J, et al. Microwave combustion for rapidly synthesizing pore-size-controllable porous graphene. Adv Funct Mater 2018;28:1800382.

101. Tian X, Cheng C, Qian L, et al. Microwave-assisted non-aqueous homogenous precipitation of nanoball-like mesoporous α-Ni(OH)2 as a precursor for NiOx and its application as a pseudocapacitor. J Mater Chem 2012;22:8029-35.

102. Yan Z, Gao Z, Zhang Z, Dai C, Wei W, Shen PK. Graphene nanosphere as advanced electrode material to promote high performance symmetrical supercapacitor. Small 2021;17:e2007915.

103. Chen T, Pan L, Lu T, Fu C, Chua DHC, Sun Z. Fast synthesis of carbon microspheres via a microwave-assisted reaction for sodium ion batteries. J Mater Chem A 2014;2:1263-7.

104. Lai L, Zhu J, Li Z, et al. Co3O4/nitrogen modified graphene electrode as Li-ion battery anode with high reversible capacity and improved initial cycle performance. Nano Energy 2014;3:134-43.

105. Amaresh S, Karthikeyan K, Jang I, Lee YS. Single-step microwave mediated synthesis of the CoS2 anode material for high rate hybrid supercapacitors. J Mater Chem A 2014;2:11099-106.

106. Shi Y, Gao J, Abruña HD, et al. Rapid synthesis of Li4Ti5O12/graphene composite with superior rate capability by a microwave-assisted hydrothermal method. Nano Energy 2014;8:297-304.

107. Haruna AB, Barrett DH, Rodella CB, et al. Microwave irradiation suppresses the Jahn-Teller distortion in spinel LiMn2O4 cathode material for lithium-ion batteries. Electrochimica Acta 2022;426:140786.

108. Velásquez EA, Silva DPB, Falqueto JB, et al. Understanding the loss of electrochemical activity of nanosized LiMn2O4 particles: a combined experimental and ab initio DFT study. J Mater Chem A 2018;6:14967-74.

109. Karthikeyan K, Amaresh S, Aravindan V, Lee YS. Microwave assisted green synthesis of MgO-carbon nanotube composites as electrode material for high power and energy density supercapacitors. J Mater Chem A 2013;1:4105-11.

110. Liu M, Zhao Q, Liu H, et al. Tuning phase evolution of β-MnO2 during microwave hydrothermal synthesis for high-performance aqueous Zn ion battery. Nano Energy 2019;64:103942.

111. Lin F, Nordlund D, Weng TC, et al. Phase evolution for conversion reaction electrodes in lithium-ion batteries. Nat Commun 2014;5:3358.

112. Ebner M, Marone F, Stampanoni M, Wood V. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries. Science 2013;342:716-20.

113. Kim T, Park J, Chang SK, Choi S, Ryu JH, Song H. The current move of lithium ion batteries towards the next phase. Adv Energy Mater 2012;2:860-72.

114. Kim H, Jegal J, Kim J, Yoon S, Roh KC, Kim K. In situ fabrication of lithium titanium oxide by microwave-assisted alkalization for high-rate lithium-ion batteries. J Mater Chem A 2013;1:14849-52.

115. Sun Y, Li C, Yang C, et al. Novel Li3VO4 Nanostructures grown in highly efficient microwave irradiation strategy and their in-situ lithium storage mechanism. Adv Sci 2022;9:e2103493.

116. Guo Y, Cao Y, Lu J, Zheng X, Deng Y. The concept, structure, and progress of seawater metal-air batteries. Microstructures 2023;3:2023038.

117. Pei J, Chen G, Zhang Q, Bie C, Sun J. Phase separation derived core/shell structured Cu11V6O26/V2O5 microspheres: first synthesis and excellent lithium-ion anode performance with outstanding capacity self-restoration. Small 2017;13:1603140.

118. Fan M, Liao D, Aboud MFA, Shakir I, Xu Y. A universal strategy toward ultrasmall hollow nanostructures with remarkable electrochemical performance. Angew Chem Int Ed 2020;59:8247-54.

119. Liu K, Jin H, Huang L, et al. Puffing ultrathin oxides with nonlayered structures. Sci Adv 2022;8:eabn2030.

120. Yoon S, Manthiram A. Microwave-hydrothermal synthesis of W0.4Mo0.6O3 and carbon-decorated WOx-MoO2 nanorod anodes for lithium ion batteries. J Mater Chem 2011;21:4082.

121. An G, Sohn JI, Ahn H. Hierarchical architecture of hybrid carbon-encapsulated hollow manganese oxide nanotubes with a porous-wall structure for high-performance electrochemical energy storage. J Mater Chem A 2016;4:2049-54.

122. Cheng Q, Yang T, Li Y, Li M, Chan CK. Oxidation-reduction assisted exfoliation of LiCoO2 into nanosheets and reassembly into functional Li-ion battery cathodes. J Mater Chem A 2016;4:6902-10.

123. Zhu J, Li Q, Bi W, et al. Ultra-rapid microwave-assisted synthesis of layered ultrathin birnessite K0.17MnO2 nanosheets for efficient energy storage. J Mater Chem A 2013;1:8154-9.

124. Zhao P, Li L, Wang X. BaTiO3-NaNbO3 energy storage ceramics with an ultrafast charge-discharge rate and temperature-stable power density. Microstructures 2022;3:2022023.

125. Lee K, Shin S, Degen T, Lee W, Yoon YS. In situ analysis of SnO2/Fe2O3/RGO to unravel the structural collapse mechanism and enhanced electrical conductivity for lithium-ion batteries. Nano Energy 2017;32:397-407.

126. Sridhar V, Kim HJ, Jung JH, Lee C, Park S, Oh IK. Defect-engineered three-dimensional graphene-nanotube-palladium nanostructures with ultrahigh capacitance. ACS Nano 2012;6:10562-70.

127. Lee SH, Sridhar V, Jung JH, et al. Graphene – nanotube - iron hierarchical nanostructure as lithium ion battery anode. ACS Nano 2013;7:4242-51.

128. Wang X, Wang Y, Wu M, Fang R, Yang X, Wang D. Ultrasonication-assisted fabrication of porous ZnO@C nanoplates for lithium-ion batteries. Microstructures 2022;2:2022016.

129. Li D, Guo Q, Cao M, Yao Z, Liu H, Hao H. The influence of A/B-sites doping on antiferroelectricity of PZO energy storage films. Microstructures 2023;3:2023007.

130. Dai R, Sun W, Lv LP, et al. Bimetal-organic-framework derivation of ball-cactus-like Ni-Sn-P@C-CNT as long-cycle anode for lithium ion battery. Small 2017;13:1700521.

131. Wang Y, Ke J, Zhang Y, Huang Y. Microwave-assisted rapid synthesis of mesoporous nanostructured ZnCo2O4 anode materials for high-performance lithium-ion batteries. J Mater Chem A 2015;3:24303-8.

132. Nayak PK, Yang L, Brehm W, Adelhelm P. From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew Chem Int Ed 2018;57:102-20.

133. Zhao C, Lu Y, Li Y, et al. Novel methods for sodium-ion battery materials. Small Methods 2017;1:1600063.

134. Yang Q, Fan Q, Peng J, Chou S, Liu H, Wang J. Recent progress on alloy-based anode materials for potassium-ion batteries. Microstructures 2023;3:2023013.

135. Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries. Chem Rev 2014;114:11636-82.

136. Roh H, Kim H, Kim M, et al. In situ synthesis of chemically bonded NaTi2(PO4)3/rGO 2D nanocomposite for high-rate sodium-ion batteries. Nano Res 2016;9:1844-55.

137. Sengupta A, Kumar A, Barik G, et al. Lower diffusion-induced stress in nano-crystallites of P2-Na2/3Ni1/3Mn1/2Ti1/6O2 novel cathode for high energy Na-ion batteries. Small 2023;19:e2206248.

138. Jin H, Song T, Paik U, Qiao SZ. Metastable two-dimensional materials for electrocatalytic energy conversions. Acc Mater Res 2021;2:559-73.

139. Islam S, Lee S, Lee S, et al. Triggering the theoretical capacity of Na1.1V3O7.9 nanorod cathode by polypyrrole coating for high-energy zinc-ion batteries. Chem Eng J 2022;446:137069.

140. Liu L, Lin Z, Shi Q, et al. High-performance 3D biphasic NH4V3O8/Zn3(OH)2V2O7·2H2O synthesized by rapid chemical precipitation as cathodes for Zn-ion batteries. Electrochem Commun 2022;140:107331.

141. Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 2012;41:797-828.

142. Luo Q, Lu C, Liu L, Zhu M. Triethanolamine assisted synthesis of bimetallic nickel cobalt nitride/nitrogen-doped carbon hollow nanoflowers for supercapacitor. Microstructures 2023;3:2023011.

143. Liu G, Chen L, Qi H. Energy storage properties of NaNbO3-based lead-free superparaelectrics with large antiferrodistortion. Microstructures 2023;3:2023009.

144. Simon P, Gogotsi Y, Dunn B. Materials science. Where do batteries end and supercapacitors begin? Science 2014;343:1210-1.

145. Wang W, Xiao Y, Li X, Cheng Q, Wang G. Bismuth oxide self-standing anodes with concomitant carbon dots welded graphene layer for enhanced performance supercapacitor-battery hybrid devices. Chem Eng J 2019;371:327-36.

146. Wang W, Jin J, Wu Y, et al. Unique holey graphene/carbon dots frameworks by microwave-initiated chain reduction for high-performance compressible supercapacitors and reusable oil/water separation. J Mater Chem A 2019;7:22054-62.

147. Sun Y, Zhang J, Liu S, Sun X, Huang N. An enhancement on supercapacitor properties of porous CoO nanowire arrays by microwave-assisted regulation of the precursor. Nanotechnology 2021;32:195707.

148. Jiang Y, Guo S, Li Y, Hu X. Rapid microwave synthesis of carbon-bridged Nb2O5 mesocrystals for high-energy and high-power sodium-ion capacitors. J Mater Chem A 2022;10:11470-6.

149. Wang Z, Jia W, Jiang M, Chen C, Li Y. Microwave-assisted synthesis of layer-by-layer ultra-large and thin NiAl-LDH/RGO nanocomposites and their excellent performance as electrodes. Sci China Mater 2015;58:944-52.

150. Lin L, Yeh M, Tsai J, Huang Y, Sun C, Ho K. A novel core-shell multi-walled carbon nanotube@graphene oxide nanoribbon heterostructure as a potential supercapacitor material. J Mater Chem A 2013;1:11237.

151. Gupta N, Sahu RK, Mishra T, Bhattacharya P. Microwave-assisted rapid synthesis of titanium phosphate free phosphorus doped Ti3C2 MXene with boosted pseudocapacitance. J Mater Chem A 2022;10:15794-810.

152. Wang W, Zhang W, Wang G, Li C. Electrophoresis-microwave synthesis of S,N-doped graphene foam for high-performance supercapacitors. J Mater Chem A 2021;9:15766-75.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/