REFERENCES

1. Sejas SA, Taylor PC, Cai M. Unmasking the negative greenhouse effect over the antarctic plateau. NPJ Clim Atmos Sci 2018;1:17.

2. Dong K, Dong X, Jiang Q, Zhao J. Assessing energy resilience and its greenhouse effect: a global perspective. Energy Econ 2021;104:105659.

3. Sullivan I, Goryachev A, Digdaya IA, et al. Coupling electrochemical CO2 conversion with CO2 capture. Nat Catal 2021;4:952-8.

4. Friedlingstein P, O'sullivan M, Jones MW, et al. Global carbon budget 2022. Earth Syst Sci Data 2022;14:4811-900.

5. Parekh A, Chaturvedi G, Dutta A. Sustainability analyses of CO2 sequestration and CO2 utilization as competing options for mitigating CO2 emissions. Sustain Energy Technol Assess 2023;55:102942.

6. Obama B. The irreversible momentum of clean energy. Science 2017;355:126-9.

7. Horike S, Kishida K, Watanabe Y, et al. Dense coordination network capable of selective CO2 capture from C1 and C2 hydrocarbons. J Am Chem Soc 2012;134:9852-5.

8. Wang Q, Bai J, Lu Z, Pan Y, You X. Finely tuning MOFs towards high-performance post-combustion CO2 capture materials. Chem Commun 2016;52:443-52.

9. Eddaoudi M, Sava DF, Eubank JF, Adil K, Guillerm V. Zeolite-like metal-organic frameworks (ZMOFs): design, synthesis, and properties. Chem Soc Rev 2015;44:228-49.

10. Wang S, Belmabkhout Y, Cairns AJ, et al. Tuning gas adsorption properties of zeolite-like supramolecular assemblies with gis topology via functionalization of isoreticular metal-organic squares. ACS Appl Mater Interfaces 2017;9:33521-7.

11. Zhou HC, Kitagawa S. Metal-organic frameworks (MOFs). Chem Soc Rev 2014;43:5415-8.

12. Guo B, Zhang J, Wang Y, Qiao X, Xiang J, Jin Y. Study on CO2 adsorption capacity and kinetic mechanism of CO2 adsorbent prepared from fly ash. Energy 2023;263:125764.

13. Pei J, Wang J, Shao K, et al. Engineering microporous ethane-trapping metal-organic frameworks for boosting ethane/ethylene separation. J Mater Chem A 2020;8:3613-20.

14. Gu XW, Wang JX, Wu E, et al. Immobilization of lewis basic sites into a stable ethane-selective MOF enabling one-step separation of ethylene from a ternary mixture. J Am Chem Soc 2022;144:2614-23.

15. Lv XL, Feng L, Xie LH, et al. Linker desymmetrization: access to a series of rare-earth tetracarboxylate frameworks with eight-connected hexanuclear nodes. J Am Chem Soc 2021;143:2784-91.

16. Lei Z, Xue Y, Chen W, et al. MOFs-based heterogeneous catalysts: new opportunities for energy-related CO2 conversion. Adv Energy Mater 2018;8:1801587.

17. Cui X, Chen K, Xing H, et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 2016;353:141-4.

18. Fu HR, Jiang YY, Luo JH, Li T. A robust heterometallic Cd(II)/Ba(II)-organic framework with exposed amino group and active sites exhibiting excellent CO2/CH4 and C2H2/CH4 separation. Chin J Struct Chem 2022;41:2203287-92. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0254586123002180 [Last accessed on 11 Aug 2023].

19. Usman M, Iqbal N, Noor T, et al. Advanced strategies in metal-organic frameworks for CO2 capture and separation. Chem Rec 2022;22:e202100230.

20. Zhang X, Wang X, Fan W, Sun D. Pore-environment engineering in multifunctional metal-organic frameworks. Chin J Chem 2020;38:509-24.

21. Bhardwaj A, Kaur J, Wuest M, Wuest F. In situ click chemistry generation of cyclooxygenase-2 inhibitors. Nat Commun 2017;8:1.

22. Palluet A, Lique F. Fine-structure excitation of CCS by He: potential energy surface and scattering calculations. J Chem Phys 2023;158:044303.

23. Harvey S, Hopkins J, Kuehl H, O'brien S, Mateeva A. Quest CCS facility: time-lapse seismic campaigns. Int J Greenh Gas Control 2022;117:103665.

24. Li J, Ma Y, Mccarthy MC, et al. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord Chem Rev 2011;255:1791-823.

25. D’Alessandro DM, Smit B, Long JR. Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed 2010;49:6058-82.

26. Fominykh S, Stankovski S, Markovic VM, Petrovic D, Osmanović S. Analysis of CO2 migration in horizontal saline aquifers during carbon capture and storage process. Sustain 2023;15:8912.

27. Kirchon A, Feng L, Drake HF, Joseph EA, Zhou HC. From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chem Soc Rev 2018;47:8611-38.

28. Jansen D, Gazzani M, Manzolini G, Dijk EV, Carbo M. Pre-combustion CO2 capture. Int J Greenh Gas Control 2015;40:167-87.

29. Kheirinik M, Ahmed S, Rahmanian N. Comparative techno-economic analysis of carbon capture processes: pre-combustion, post-combustion, and oxy-fuel combustion operations. Sustain 2021;13:13567.

30. Maffei T, Khatami R, Pierucci S, Faravelli T, Ranzi E, Levendis YA. Experimental and modeling study of single coal particle combustion in O2/N2 and oxy-fuel (O2/CO2) atmospheres. Combust Flame 2013;160:2559-72.

31. Cau G, Tola V, Ferrara F, Porcu A, Pettinau A. CO2-free coal-fired power generation by partial oxy-fuel and post-combustion CO2 capture: techno-economic analysis. Fuel 2018;214:423-35.

32. Sircar S, Golden TC. Purification of hydrogen by pressure swing adsorption. Sep Sci Technol 2000;35:667-87.

33. Chao C, Deng Y, Dewil R, Baeyens J, Fan X. Post-combustion carbon capture. Renew Sustain Energ 2021;138:110490.

34. Dinca C, Slavu N, Badea A. Benchmarking of the pre/post-combustion chemical absorption for the CO2 capture. J Energy Inst 2018;91:445-56.

35. Na S, Hwang SJ, Kim H, Baek I, Lee KS. Modeling of CO2 solubility of an aqueous polyamine solvent for CO2 capture. Chem Eng Sci 2019;204:140-50.

36. Kárászová M, Zach B, Petrusová Z, et al. Post-combustion carbon capture by membrane separation, review. Sep Purif Technol 2020;238:116448.

37. Liu M, Nothling MD, Webley PA, Jin J, Fu Q, Qiao GG. High-throughput CO2 capture using PIM-1@MOF based thin film composite membranes. Chem Eng J 2020;396:125328.

38. Wang Z, Ren H, Zhang S, Zhang F, Jin J. Polymers of intrinsic microporosity/metal-organic framework hybrid membranes with improved interfacial interaction for high-performance CO2 separation. J Mater Chem A 2017;5:10968-77.

39. Witt A, Pozzi R, Diesch S, Hädicke O, Grammel H. New light on ancient enzymes - in vitro CO2 fixation by pyruvate synthase of desulfovibrio africanus and sulfolobus acidocaldarius. FEBS J 2019;286:4494-508.

40. Hefti M, Joss L, Bjelobrk Z, Mazzotti M. On the potential of phase-change adsorbents for CO2 capture by temperature swing adsorption. Faraday Discuss 2016;192:153-79.

41. Mesfer MK, Danish M, Fahmy YM, Rashid MM. Post-combustion CO2 capture with activated carbons using fixed bed adsorption. Heat Mass Transfer 2018;54:2715-24.

42. Gutierrez-ortega A, Nomen R, Sempere J, Parra J, Montes-morán M, Gonzalez-olmos R. A fast methodology to rank adsorbents for CO2 capture with temperature swing adsorption. Chem Eng J 2022;435:134703.

43. Rehman A, Farrukh S, Hussain A, Fan X, Pervaiz E. Adsorption of CO2 on amine-functionalized green metal-organic framework: an interaction between amine and CO2 molecules. Environ Sci Pollut Res Int 2019;26:36214-25.

44. Choi S, Drese JH, Jones CW. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2009;2:796-854.

45. Yi H, Li F, Ning P, et al. Adsorption separation of CO2, CH4, and N2 on microwave activated carbon. Chem Eng J 2013;215:635-42.

46. Jung Y, Ko YG, Nah IW, Choi US. Designing large-sized and spherical CO2 adsorbents for highly reversible CO2 capture and low pressure drop. Chem Eng J 2022;427:131781.

47. Wahby A, Silvestre-albero J, Sepúlveda-escribano A, Rodríguez-reinoso F. CO2 adsorption on carbon molecular sieves. Microporous Mesoporous Mater 2012;164:280-7.

48. Li S, Gallucci F. CO2 capture and activation with a plasma-sorbent system. Chem Eng J 2022;430:132979.

49. Zhang Q, Gao S, Yu J. Metal sites in zeolites: synthesis, characterization, and catalysis. Chem Rev 2023;123:6039-106.

50. Su F, Lu C. CO2 capture from gas stream by zeolite 13X using a dual-column temperature/vacuum swing adsorption. Energy Environ Sci 2012;5:9021.

51. Hong SH, Jang MS, Cho SJ, Ahn WS. Chabazite and zeolite 13X for CO2 capture under high pressure and moderate temperature conditions. Chem Commun 2014;50:4927-30.

52. Shang J, Li G, Singh R, Xiao P, Liu JZ, Webley PA. Determination of composition range for “molecular trapdoor” effect in chabazite zeolite. J Phys Chem C 2013;117:12841-7.

53. Remy T, Peter SA, Van Tendeloo L, et al. Adsorption and separation of CO2 on KFI zeolites: effect of cation type and Si/Al ratio on equilibrium and kinetic properties. Langmuir 2013;29:4998-5012.

54. Fiuza RA Jr, Medeiros de Jesus Neto R, Correia LB, Carvalho Andrade HM. Preparation of granular activated carbons from yellow mombin fruit stones for CO2 adsorption. J Environ Manage 2015;161:198-205.

55. Xu D, Xiao P, Zhang J, et al. Effects of water vapour on CO2 capture with vacuum swing adsorption using activated carbon. Chem Eng J 2013;230:64-72.

56. Ghazvini M, Vahedi M, Najafi Nobar S, Sabouri F. Investigation of the MOF adsorbents and the gas adsorptive separation mechanisms. J Environ Chem Eng 2021;9:104790.

57. Liu J, Thallapally PK, McGrail BP, Brown DR, Liu J. Progress in adsorption-based CO2 capture by metal-organic frameworks. Chem Soc Rev 2012;41:2308-22.

58. Zheng D, Yu Q, Heng Y, Cheng PL. Recent advances in C2 gases separation and purification by metal-organic frameworks. Chin J Struct Chem 2022;41:2211031-44. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0254586123002441 [Last accessed on 11 Aug 2023].

59. Wong-Foy AG, Matzger AJ, Yaghi OM. Exceptional H2 saturation uptake in microporous metal-organic frameworks. J Am Chem Soc 2006;128:3494-5.

60. Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002;295:469-72.

61. Salahuddin U, Iqbal N, Noor T, et al. ZIF-67 Derived MnO2 doped electrocatalyst for oxygen reduction reaction. Catalysts 2021;11:92.

62. Zhu C, Zhao B, Takata M, Aoki Y, Habazaki H. Biomass derived porous carbon for superior electrocatalysts for oxygen reduction reaction. J Appl Electrochem 2023;53:1379-88.

63. Yaqoob L, Noor T, Iqbal N, Nasir H, Mumtaz A. Electrocatalytic performance of NiNH2BDC MOF based composites with rGO for methanol oxidation reaction. Sci Rep 2021;11:13402.

64. Usman M, Ali M, Al-Maythalony BA, et al. Highly efficient permeation and separation of gases with metal-organic frameworks confined in polymeric nanochannels. ACS Appl Mater Interfaces 2020;12:49992-50001.

65. Jiang H, Jia J, Shkurenko A, et al. Enriching the reticular chemistry repertoire: merged nets approach for the rational design of intricate mixed-linker metal-organic framework platforms. J Am Chem Soc 2018;140:8858-67.

66. Ming Y, Purewal J, Yang J, et al. Kinetic stability of MOF-5 in humid environments: impact of powder densification, humidity level, and exposure time. Langmuir 2015;31:4988-95.

67. Gu Y, Wang Y, Zhao S, et al. N-donating and water-resistant Zn-carboxylate frameworks for humid carbon dioxide capture from flue gas. Fuel 2023;336:126793.

68. Li JR, Sculley J, Zhou HC. Metal-organic frameworks for separations. Chem Rev 2012;112:869-932.

69. Zhang Z, Yao Z, Xiang S, Chen B. Perspective of microporous metal-organic frameworks for CO2 capture and separation. Energy Environ Sci 2014;7:2868.

70. Samanta A, Zhao A, Shimizu GKH, Sarkar P, Gupta R. Post-combustion CO2 capture using solid sorbents: a review. Ind Eng Chem Res 2012;51:1438-63.

71. Zhang J, Singh R, Webley PA. Alkali and alkaline-earth cation exchanged chabazite zeolites for adsorption based CO2 capture. Microporous Mesoporous Mater 2008;111:478-87.

72. Zhou C, Li H, Qin H, et al. Defective UiO-66-NH2 monoliths for optimizing CO2 capture performance. Chem Eng J 2023;467:143394.

73. Patel HA, Byun J, Yavuz CT. Carbon dioxide capture adsorbents: chemistry and methods. ChemSusChem 2017;10:1303-17.

74. Yu H, Li B, Liu S, et al. Three new copper(II) coordination polymers constructed from isomeric sulfo-functionalized phthalate tectonics: synthesis, crystal structure, photocatalytic and proton conduction properties. J Solid State Chem 2021;294:121860.

75. O’Keeffe M, Yaghi OM. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem Rev 2012;112:675-702.

76. Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 2012;112:933-69.

77. Zhu QL, Xu Q. Metal-organic framework composites. Chem Soc Rev 2014;43:5468-512.

78. Bai Y, Dou Y, Xie LH, Rutledge W, Li JR, Zhou HC. Zr-based metal-organic frameworks: design, synthesis, structure, and applications. Chem Soc Rev 2016;45:2327-67.

79. Kalmutzki MJ, Hanikel N, Yaghi OM. Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Sci Adv 2018;4:eaat9180.

80. Moghadam PZ, Li A, Wiggin SB, et al. Development of a cambridge structural database subset: a collection of metal-organic frameworks for past, present, and future. Chem Mater 2017;29:2618-25.

81. Farrusseng D, Aguado S, Pinel C. Metal-organic frameworks: opportunities for catalysis. Angew Chem Int Ed 2009;48:7502-13.

82. Morris RV, Ruff SW, Gellert R, et al. Identification of carbonate-rich outcrops on Mars by the Spirit rover. Science 2010;329:421-4.

83. Suh MP, Park HJ, Prasad TK, Lim DW. Hydrogen storage in metal-organic frameworks. Chem Rev 2012;112:782-835.

84. He Y, Zhou W, Qian G, Chen B. Methane storage in metal-organic frameworks. Chem Soc Rev 2014;43:5657-78.

85. Masoomi MY, Morsali A, Dhakshinamoorthy A, Garcia H. Mixed-metal MOFs: unique opportunities in metal-organic framework (MOF) functionality and design. Angew Chem Int Ed 2019;58:15188-205.

86. Ahmad A, Khan S, Tariq S, Luque R, Verpoort F. Self-sacrifice MOFs for heterogeneous catalysis: synthesis mechanisms and future perspectives. Mater Today 2022;55:137-69.

87. Small LJ, Henkelis SE, Rademacher DX, et al. Near-zero power MOF-based sensors for NO2 detection. Adv Funct Mater 2020;30:2006598.

88. Hausdorf S, Baitalow F, Böhle T, Rafaja D, Mertens FO. Main-group and transition-element IRMOF homologues. J Am Chem Soc 2010;132:10978-81.

89. Titi HM, Marrett JM, Dayaker G, et al. Hypergolic zeolitic imidazolate frameworks (ZIFs) as next-generation solid fuels: unlocking the latent energetic behavior of ZIFs. Sci Adv 2019;5:eaav9044.

90. Yang S, Li X, Zeng G, et al. Materials Institute Lavoisier (MIL) based materials for photocatalytic applications. Coord Chem Rev 2021;438:213874.

91. Yang J, Yang K, Zhu X, et al. Band engineering of non-metal modified polymeric carbon nitride with broad spectral response for enhancing photocatalytic CO2 reduction. Chem Eng J 2023;461:141841.

92. Zhang G, Wei G, Liu Z, Oliver SRJ, Fei H. A robust sulfonate-based metal-organic framework with permanent porosity for efficient CO2 capture and conversion. Chem Mater 2016;28:6276-81.

93. Liu Y, Wang ZU, Zhou H. Recent advances in carbon dioxide capture with metal-organic frameworks. Greenhouse Gas Sci Technol 2012;2:239-59.

94. Quílez-bermejo J, Melle-franco M, San-fabián E, Morallón E, Cazorla-amorós D. Towards understanding the active sites for the ORR in N-doped carbon materials through fine-tuning of nitrogen functionalities: an experimental and computational approach. J Mater Chem A 2019;7:24239-50.

95. Serra-crespo P, Ramos-fernandez EV, Gascon J, Kapteijn F. Synthesis and characterization of an amino functionalized MIL-101(Al): separation and catalytic properties. Chem Mater 2011;23:2565-72.

96. Dinakar B, Forse AC, Jiang HZH, et al. Overcoming metastable CO2 adsorption in a bulky diamine-appended metal-organic framework. J Am Chem Soc 2021;143:15258-70.

97. Lu W, Sculley JP, Yuan D, Krishna R, Wei Z, Zhou H. Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas. Angew Chem Int Ed 2012;51:7480-4.

98. Khan J, Iqbal N, Asghar A, Noor T. Novel amine functionalized metal organic framework synthesis for enhanced carbon dioxide capture. Mater Res Express 2019;6:105539.

99. Mcdonald TM, D'alessandro DM, Krishna R, Long JR. Enhanced carbon dioxide capture upon incorporation of N,N’-dimethylethylenediamine in the metal-organic framework CuBTTri. Chem Sci 2011;2:2022-8.

100. Tu S, Yu L, Liu J, et al. Efficient CO2 capture under humid conditions on a novel amide-functionalized Fe-soc metal-organic framework. ACS Appl Mater Interfaces 2023;15:12240-7.

101. Lyu H, Chen OI, Hanikel N, et al. Carbon dioxide capture chemistry of amino acid functionalized metal-organic frameworks in humid flue gas. J Am Chem Soc 2022;144:2387-96.

102. Zhang Z, Ding Q, Peh SB, et al. Mechano-assisted synthesis of an ultramicroporous metal-organic framework for trace CO2 capture. Chem Commun 2020;56:7726-9.

103. Peng YL, Pham T, Li P, et al. Robust ultramicroporous metal-organic frameworks with benchmark affinity for acetylene. Angew Chem Int Ed 2018;57:10971-5.

104. Bhatt PM, Belmabkhout Y, Cadiau A, et al. A fine-tuned fluorinated MOF addresses the needs for trace CO2 removal and air capture using physisorption. J Am Chem Soc 2016;138:9301-7.

105. Zhang Z, Ding Q, Cui J, Cui X, Xing H. High and selective capture of low-concentration CO2 with an anion-functionalized ultramicroporous metal-organic framework. Sci China Mater 2021;64:691-7.

106. Chakraborty G, Das P, Mandal SK. Polar sulfone-functionalized oxygen-rich metal-organic frameworks for highly selective CO2 capture and sensitive detection of acetylacetone at ppb level. ACS Appl Mater Interfaces 2020;12:11724-36.

107. Lin RB, Chen D, Lin YY, Zhang JP, Chen XM. A zeolite-like zinc triazolate framework with high gas adsorption and separation performance. Inorg Chem 2012;51:9950-5.

108. Lin R, Xiang S, Zhou W, Chen B. Microporous metal-organic framework materials for gas separation. Chem 2020;6:337-63.

109. Fan W, Wang X, Zhang X, et al. Fine-tuning the pore environment of the microporous Cu-MOF for high propylene storage and efficient separation of light hydrocarbons. ACS Cent Sci 2019;5:1261-8.

110. Jo D, Lee SK, Cho KH, Yoon JW, Lee UH. An Amine-functionalized ultramicroporous metal-organic framework for postcombustion CO2 capture. ACS Appl Mater Interfaces 2022;14:56707-14.

111. Lin JB, Nguyen TTT, Vaidhyanathan R, et al. A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture. Science 2021;374:1464-9.

112. Oschatz M, Antonietti M. A search for selectivity to enable CO2 capture with porous adsorbents. Energy Environ Sci 2018;11:57-70.

113. Qazvini OT, Babarao R, Telfer SG. Selective capture of carbon dioxide from hydrocarbons using a metal-organic framework. Nat Commun 2021;12:197.

114. Chowdhury P, Mekala S, Dreisbach F, Gumma S. Adsorption of CO, CO2 and CH4 on Cu-BTC and MIL-101 metal organic frameworks: Effect of open metal sites and adsorbate polarity. Microporous Mesoporous Mater 2012;152:246-52.

115. Kökçam-Demir Ü, Goldman A, Esrafili L, et al. Coordinatively unsaturated metal sites (open metal sites) in metal-organic frameworks: design and applications. Chem Soc Rev 2020;49:2751-98.

116. Lim D, Chyun SA, Suh MP. Hydrogen storage in a potassium-ion-bound metal-organic framework incorporating crown ether struts as specific cation binding sites. Angew Chem Int Ed 2014;126:7953-6.

117. Shin SR, Cho HS, Lee Y, et al. In Situ mapping and local negative uptake behavior of adsorbates in individual pores of metal-organic frameworks. J Am Chem Soc 2021;143:20747-57.

118. Chen K, Kang YS, Zhao Y, Yang JM, Lu Y, Sun WY. Cucurbit[6]uril-based supramolecular assemblies: possible application in radioactive cesium cation capture. J Am Chem Soc 2014;136:16744-7.

119. Li N, Chang Z, Huang H, et al. Specific K+ binding sites as CO2 traps in a porous MOF for enhanced CO2 selective sorption. Small 2019;15:e1900426.

120. Zhao X, Bu X, Zhai QG, Tran H, Feng P. Pore space partition by symmetry-matching regulated ligand insertion and dramatic tuning on carbon dioxide uptake. J Am Chem Soc 2015;137:1396-9.

121. Oh JM, Venters CC, Di C, et al. U1 snRNP regulates cancer cell migration and invasion in vitro. Nat Commun 2020;11:1.

122. Balogun HA, Bahamon D, Almenhali S, Vega LF, Alhajaj A. Are we missing something when evaluating adsorbents for CO2 capture at the system level? Energy Environ Sci 2021;14:6360-80.

123. Wang Q, Ke T, Yang L, et al. Cover picture: separation of Xe from Kr with record selectivity and productivity in anion-pillared ultramicroporous materials by inverse size-sieving. Angew Chem Int Ed 2020;59:3341.

124. Chen Y, Qiao Z, Lv D, et al. Efficient adsorptive separation of C3H6 over C3H8 on flexible and thermoresponsive CPL-1. Chem Eng J 2017;328:360-7.

125. Peng J, Liu Z, Wu Y, Xian S, Li Z. High-performance selective CO2 capture on a stable and flexible metal-organic framework via discriminatory gate-opening effect. ACS Appl Mater Interfaces 2022;14:21089-97.

126. Jiang Y, Tan P, Qi S, et al. Cover picture: metal-organic frameworks with target-specific active sites switched by photoresponsive motifs: efficient adsorbents for tailorable CO2 capture. Angew Chem Int Ed 2019;58:6457.

127. Cairns AJ, Perman JA, Wojtas L, et al. Supermolecular building blocks (SBBs) and crystal design: 12-connected open frameworks based on a molecular cubohemioctahedron. J Am Chem Soc 2008;130:1560-1.

128. Song X, Zhang M, Chen C, et al. Pure-supramolecular-linker approach to highly connected metal-organic frameworks for CO2 capture. J Am Chem Soc 2019;141:14539-43.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/