REFERENCES

1. World Health Organization. Cardiovascular diseases. Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) [Last accessed on 5 Jun 2023].

2. Ashorobi D, Ameer MA, Fernandez R. Thrombosis. 2019. https://www.ncbi.nlm.nih.gov/books/NBK538430/ [Last accessed on 5 Jun 2023].

3. Kaplan ZS, Jackson SP. The role of platelets in atherothrombosis. Hematology Am Soc Hematol Educ Program 2011;2011:51-61.

4. Zhang Y, Jiang F, Chen Y, Ju LA. Platelet mechanobiology inspired microdevices: from hematological function tests to disease and drug screening. Front Pharmacol 2021;12:779753.

5. Ching T, Toh YC, Hashimoto M, Zhang YS. Bridging the academia-to-industry gap: organ-on-a-chip platforms for safety and toxicology assessment. Trends Pharmacol Sci 2021;42:715-28.

6. Savoji H, Mohammadi MH, Rafatian N, et al. Cardiovascular disease models: a game changing paradigm in drug discovery and screening. Biomaterials 2019;198:3-26.

7. Nguyen N, Thurgood P, Sekar NC, et al. Microfluidic models of the human circulatory system: versatile platforms for exploring mechanobiology and disease modeling. Biophys Rev 2021;13:769-86.

8. Ford ES, Capewell S. Proportion of the decline in cardiovascular mortality disease due to prevention versus treatment: public health versus clinical care. Annu Rev Public Health 2011;32:5-22.

9. Mutch NJ, Walters S, Gardiner EE, et al. Basic science research opportunities in thrombosis and hemostasis: communication from the SSC of the ISTH. J Thromb Haemost 2022;20:1496-506.

10. Sato K, Sato K. Chapter 6 - blood vessels-on-a-chip. In: Principles of human organs-on-chips. Sawston, UK: Woodhead Publishing; 2023, pp. 167-94.

11. Colace TV, Tormoen GW, McCarty OJ, Diamond SL. Microfluidics and coagulation biology. Annu Rev Biomed Eng 2013;15:283-303.

12. Nguyen T, Sarkar T, Tran T, Moinuddin SM, Saha D, Ahsan F. Multilayer soft photolithography fabrication of microfluidic devices using a custom-built wafer-scale PDMS slab aligner and cost-efficient equipment. Micromachines 2022;13:1357.

13. Geisterfer ZM, Oakey J, Gatlin JC. Microfluidic encapsulation of Xenopus laevis cell-free extracts using hydrogel photolithography. STAR Protoc 2020;1:100221.

14. Brower K, White AK, Fordyce PM. Multi-step variable height photolithography for valved multilayer microfluidic devices. J Vis Exp 2017;119:55276.

15. Hattori K, Sugiura S, Kanamori T. Microfluidic perfusion culture. Methods Mol Biol 2014;1104:251-63.

16. Lokai T, Albin B, Qubbaj K, Tiwari AP, Adhikari P, Yang IH. A review on current brain organoid technologies from a biomedical engineering perspective. Exp Neurol 2023;367:114461.

17. Halldorsson S, Lucumi E, Gómez-Sjöberg R, Fleming RMT. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens Bioelectron 2015;63:218-31.

18. Alhmoud H, Alkhaled M, Kaynak BE, Hanay MS. Leveraging the elastic deformability of polydimethylsiloxane microfluidic channels for efficient intracellular delivery. Lab Chip 2023;23:714-26.

19. Ju L, Chen Y, Zhou F, Lu H, Cruz MA, Zhu C. Von willebrand factor-A1 domain binds platelet glycoprotein Ibα in multiple states with distinctive force-dependent dissociation kinetics. Thromb Res 2015;136:606-12.

20. de Witt SM, Swieringa F, Cavill R, et al. Identification of platelet function defects by multi-parameter assessment of thrombus formation. Nat Commun 2014;5:4257.

21. Ahn J, Yoon MJ, Hong SH, et al. Three-dimensional microengineered vascularised endometrium-on-a-chip. Hum Reprod 2021;36:2720-31.

22. Li X, Mearns SM, Martins-Green M, Liu Y. Procedure for the development of multi-depth circular cross-sectional endothelialized microchannels-on-a-chip. J Vis Exp 2013;80:e50771.

23. Qiu Y, Ahn B, Sakurai Y, et al. Microvasculature-on-a-chip for the long-term study of endothelial barrier dysfunction and microvascular obstruction in disease. Nat Biomed Eng 2018;2:453-63.

24. Ching T, Vasudevan J, Chang SY, et al. Biomimetic vasculatures by 3D-printed porous molds. Small 2022;18:e2203426.

25. Bulboacă AE, Boarescu PM, Melincovici CS, Mihu CM. Microfluidic endothelium-on-a-chip development, from in vivo to in vitro experimental models. Rom J Morphol Embryol 2020;61:15-23.

26. Phan DTT, Wang X, Craver BM, et al. A vascularized and perfused organ-on-a-chip platform for large-scale drug screening applications. Lab Chip 2017;17:511-20.

27. Tucker WD, Arora Y, Mahajan K. Anatomy, blood vessels. Treasure Island, FL: StatPearls Publishing; 2024.

28. Camasão DB, Mantovani D. The mechanical characterization of blood vessels and their substitutes in the continuous quest for physiological-relevant performances. A critical review. Mater Today Bio 2021;10:100106.

29. Baskurt OK, Meiselman HJ. Blood rheology and hemodynamics. Semin Thromb Hemost 2003;29:435-50.

30. Secomb TW. Hemodynamics. Compr Physiol 2016;6:975-1003.

31. Pandian NKR, Mannino RG, Lam WA, Jain A. Thrombosis-on-a-chip: prospective impact of microphysiological models of vascular thrombosis. Curr Opin Biomed Eng 2018;5:29-34.

32. Gogia S, Neelamegham S. Role of fluid shear stress in regulating VWF structure, function and related blood disorders. Biorheology 2015;52:319-35.

33. Aird WC. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 2007;100:158-73.

34. Zhang S, Liu Y, Cao Y, et al. Targeting the microenvironment of vulnerable atherosclerotic plaques: an emerging diagnosis and therapy strategy for atherosclerosis. Adv Mater 2022;34:e2110660.

35. Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 2011;91:327-87.

36. Bovill EG, van der Vliet A. Venous valvular stasis-associated hypoxia and thrombosis: what is the link? Annu Rev Physiol 2011;73:527-45.

37. Blann AD, Lip GY. Venous thromboembolism. BMJ 2006;332:215-9.

38. Voetsch B, Loscalzo J. Genetic determinants of arterial thrombosis. Arterioscler Thromb Vasc Biol 2004;24:216-29.

39. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res 2014;114:1852-66.

40. Kumar DR, Hanlin E, Glurich I, Mazza JJ, Yale SH. Virchow’s contribution to the understanding of thrombosis and cellular biology. Clin Med Res 2010;8:168-72.

41. Ashorobi D, Ameer MA, Fernandez R. Thrombosis. Treasure Island, FL: StatPearls Publishing; 2024.

42. Neubauer K, Zieger B. Endothelial cells and coagulation. Cell Tissue Res 2022;387:391-8.

43. Becker BF, Heindl B, Kupatt C, Zahler S. Endothelial function and hemostasis. Z Kardiol 2000;89:160-7.

44. Halcox JP, Deanfield JE. Endothelial cell function testing: how does the method help us in evaluating vascular status? Acta Paediatr Suppl 2004;93:48-54.

45. Wakefield TW, Myers DD, Henke PK. Mechanisms of venous thrombosis and resolution. Arterioscler Thromb Vasc Biol 2008;28:387-91.

46. Wong KH, Chan JM, Kamm RD, Tien J. Microfluidic models of vascular functions. Annu Rev Biomed Eng 2012;14:205-30.

47. Zhang Y, Ramasundara SZ, Preketes-Tardiani RE, Cheng V, Lu H, Ju LA. Emerging microfluidic approaches for platelet mechanobiology and interplay with circulatory systems. Front Cardiovasc Med 2021;8:766513.

48. Westein E, van der Meer AD, Kuijpers MJ, Frimat JP, van den Berg A, Heemskerk JW. Atherosclerotic geometries exacerbate pathological thrombus formation poststenosis in a von Willebrand factor-dependent manner. Proc Natl Acad Sci USA 2013;110:1357-62.

49. Tovar-Lopez FJ, Rosengarten G, Westein E, et al. A microfluidics device to monitor platelet aggregation dynamics in response to strain rate micro-gradients in flowing blood. Lab Chip 2010;10:291-302.

50. Ha H, Lee SJ. Hemodynamic features and platelet aggregation in a stenosed microchannel. Microvasc Res 2013;90:96-105.

51. Jung SY, Yeom E. Microfluidic measurement for blood flow and platelet adhesion around a stenotic channel: effects of tile size on the detection of platelet adhesion in a correlation map. Biomicrofluidics 2017;11:024119.

52. Zainal Abidin NA, Poon EKW, Szydzik C, et al. An extensional strain sensing mechanosome drives adhesion-independent platelet activation at supraphysiological hemodynamic gradients. BMC Biol 2022;20:73.

53. Jain A, Graveline A, Waterhouse A, Vernet A, Flaumenhaft R, Ingber DE. A shear gradient-activated microfluidic device for automated monitoring of whole blood haemostasis and platelet function. Nat Commun 2016;7:10176.

54. Zhao YC, Zhang Y, Wang Z, et al. Novel movable typing for personalized vein-chips in large scale: recapitulate patient-specific virchow’s triad and its contribution to cerebral venous sinus thrombosis. Adv Funct Mater 2023;33:2214179.

55. Costa PF, Albers HJ, Linssen JEA, et al. Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography data. Lab Chip 2017;17:2785-92.

56. Gimbrone MA Jr, Topper JN, Nagel T, Anderson KR, Garcia-Cardeña G. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann N Y Acad Sci 2000;902:230-9; discussion 239-40.

57. Menon NV, Su C, Pang KT, et al. Recapitulating atherogenic flow disturbances and vascular inflammation in a perfusable 3D stenosis model. Biofabrication 2020;12:045009.

58. Berry J, Peaudecerf FJ, Masters NA, Neeves KB, Goldstein RE, Harper MT. An “occlusive thrombosis-on-a-chip” microfluidic device for investigating the effect of anti-thrombotic drugs. Lab Chip 2021;21:4104-17.

59. Li M, Ku DN, Forest CR. Microfluidic system for simultaneous optical measurement of platelet aggregation at multiple shear rates in whole blood. Lab Chip 2012;12:1355-62.

60. Tovar-Lopez F, Thurgood P, Gilliam C, et al. A microfluidic system for studying the effects of disturbed flow on endothelial cells. Front Bioeng Biotechnol 2019;7:81.

61. Hesh CA, Qiu Y, Lam WA. Vascularized microfluidics and the blood-endothelium interface. Micromachines 2019;11:18.

62. Sakurai Y, Hardy ET, Ahn B, et al. A microengineered vascularized bleeding model that integrates the principal components of hemostasis. Nat Commun 2018;9:509.

63. Ciciliano JC, Sakurai Y, Myers DR, et al. Resolving the multifaceted mechanisms of the ferric chloride thrombosis model using an interdisciplinary microfluidic approach. Blood 2015;126:817-24.

64. Herbig BA, Diamond SL. Thrombi produced in stagnation point flows have a core-shell structure. Cell Mol Bioeng 2017;10:515-21.

65. Jain A, van der Meer AD, Papa AL, et al. Assessment of whole blood thrombosis in a microfluidic device lined by fixed human endothelium. Biomed Microdevices 2016;18:73.

66. Dupuy A, Hagimola L, Mgaieth NSA, et al. Thromboinflammation model-on-a-chip by whole blood microfluidics on fixed human endothelium. Diagnostics 2021;11:203.

67. Zhang X, Bishawi M, Zhang G, et al. Modeling early stage atherosclerosis in a primary human vascular microphysiological system. Nat Commun 2020;11:5426.

68. Zheng Y, Chen J, Craven M, et al. In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci USA 2012;109:9342-7.

69. Milusev A, Ren J, Despont A, et al. Glycocalyx dynamics and the inflammatory response of genetically modified porcine endothelial cells. Xenotransplantation 2023;30:e12820.

70. Poventud-Fuentes I, Kwon KW, Seo J, et al. A human vascular injury-on-a-chip model of hemostasis. Small 2021;17:e2004889.

71. Yaneva-Sirakova T, Serbezova I, Vassilev D. Functional assessment of intermediate vascular disease. Biomed Res Int 2018;2018:7619092.

72. Li Y, Wang J, Wan W, et al. Engineering a Bi-Conical microchip as vascular stenosis model. Micromachines 2019;10:790.

73. Zhang Y, Aye S, Cheng V, et al. Microvasculature-on-a-post chip that recapitulates prothrombotic vascular geometries and 3D flow disturbance. Adv Mater Inter 2023;10:2300234.

74. Kolodziejczyk AM, Kucinska M, Jakubowska A, et al. Endothelial cell aging detection by means of atomic force spectroscopy. J Mol Recognit 2020;33:e2853.

75. Lai A, Zhou Y, Thurgood P, et al. Endothelial response to the combined biomechanics of vessel stiffness and shear stress is regulated via piezo1. ACS Appl Mater Interfaces 2023;15:59103-16.

76. Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 2020;226:119536.

77. Chen L, Yang C, Xiao Y, et al. Millifluidics, microfluidics, and nanofluidics: manipulating fluids at varying length scales. Mater Today Nano 2021;16:100136.

78. Lyu Q, Gong S, Yin J, Dyson JM, Cheng W. Soft wearable healthcare materials and devices. Adv Healthc Mater 2021;10:e2100577.

79. Ray TR, Choi J, Bandodkar AJ, et al. Bio-integrated wearable systems: a comprehensive review. Chem Rev 2019;119:5461-533.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/