REFERENCES

1. Fujii M, Fujii R, Takada M, Sugimoto H. Silicon quantum dot supraparticles for fluorescence bioimaging. ACS Appl Nano Mater 2020;3:6099-107.

2. Kwon J, Jun SW, Choi SI, et al. FeSe quantum dots for in vivo multiphoton biomedical imaging. Sci Adv 2019;5:eaay0044.

3. Shaik SA, Sengupta S, Varma RS, Gawande MB, Goswami A. Syntheses of N-doped carbon quantum dots (NCQDs) from bioderived precursors: a timely update. ACS Sustain Chem Eng 2021;9:3-49.

4. Sun Y, Zheng S, Liu L, et al. The cost-effective preparation of green fluorescent carbon dots for bioimaging and enhanced intracellular drug delivery. Nanoscale Res Lett 2020;15:55.

5. Cho Y, Soufiani AM, Yun JS, et al. Mixed 3D-2D passivation treatment for mixed-cation lead mixed-halide perovskite solar cells for higher efficiency and better stability. Adv Energy Mater 2018;8:1703392.

6. Cordero F, Craciun F, Trequattrini F, et al. Stability of cubic FAPbI3 from X-ray diffraction, anelastic, and dielectric measurements. J Phys Chem Lett 2019;10:2463-9.

7. Rambabu D, Bhattacharyya S, Singh T, Maji TK. Stabilization of MAPbBr3 perovskite quantum dots on perovskite MOFs by a one-step mechanochemical synthesis. Inorg Chem 2020;59:1436-43.

8. Zhang Y, Zhou Z, Ji F, et al. Trash into treasure: δ-FAPbI3 polymorph stabilized MAPbI3 Perovskite with power conversion efficiency beyond 21. Adv Mater 2018;30:e1707143.

9. Iravani S, Varma RS. Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots: a review. Environ Chem Lett 2020;18:703-27.

10. Jouyandeh M, Mousavi Khadem SS, Habibzadeh S, et al. Quantum dots for photocatalysis: synthesis and environmental applications. Green Chem 2021;23:4931-54.

11. Ye B, Jiang R, Yu Z, et al. Pt(111) quantum dot engineered Fe-MOF nanosheet arrays with porous core-shell as an electrocatalyst for efficient overall water splitting. J Catal 2019;380:307-17.

12. Alsalloum AY, Turedi B, Zheng X, et al. Low-temperature crystallization enables 21.9% efficient single-crystal MAPbI3 inverted perovskite solar cells. ACS Energy Lett 2020;5:657-62.

13. Chen Z, Chen Z, Li H, Zhao X, Zhu M, Wang M. Investigation on charge carrier recombination of hybrid organic-inorganic perovskites doped with aggregation-induced emission luminogen under high photon flux excitation. Adv Opt Mater 2018;6:1800221.

14. Masi S, Gualdrón-reyes AF, Mora-seró I. Stabilization of black perovskite phase in FAPbI3 and CsPbI3. ACS Energy Lett 2020;5:1974-85.

15. Wang D, Wright M, Elumalai NK, Uddin A. Stability of perovskite solar cells. Solar Energy Mater Solar Cells 2016;147:255-75.

16. Hou J, Wang Z, Chen P, Chen V, Cheetham AK, Wang L. Intermarriage of halide perovskites and metal-organic framework crystals. Angew Chem Int Ed 2020;59:19434-49.

17. Hao M, Bai Y, Zeiske S, et al. Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1-xFAxPbI3 quantum dot solar cells with reduced phase segregation. Nat Energy 2020;5:79-88.

18. Nagaraj G, Mohammed MKA, Shekargoftar M, et al. High-performance perovskite solar cells using the graphene quantum dot-modified SnO2/ZnO photoelectrode. Mater Today Energy 2021;22:100853.

19. Zhao H, Yu X, Li C, et al. Carbon quantum dots modified TiO2 composites for hydrogen production and selective glucose photoreforming. J Energy Chem 2022;64:201-8.

20. Yoo D, Park Y, Cheon B, Park MH. Carbon dots as an effective fluorescent sensing platform for metal ion detection. Nanoscale Res Lett 2019;14:272.

21. Abbas A, Tabish TA, Bull SJ, Lim TM, Phan AN. High yield synthesis of graphene quantum dots from biomass waste as a highly selective probe for Fe3+ sensing. Sci Rep 2020;10:21262.

22. Ganganboina AB, Dega NK, Tran HL, Darmonto W, Doong RA. Application of sulfur-doped graphene quantum dots@gold-carbon nanosphere for electrical pulse-induced impedimetric detection of glioma cells. Biosens Bioelectron 2021;181:113151.

23. Shi Y, Wang Z, Meng T, et al. Red phosphorescent carbon quantum dot organic framework-based electroluminescent light-emitting diodes exceeding 5% external quantum efficiency. J Am Chem Soc 2021;143:18941-51.

24. Wang S, Kang G, Cui F, Zhang Y. Dual-color graphene quantum dots and carbon nanoparticles biosensing platform combined with Exonuclease III-assisted signal amplification for simultaneous detection of multiple DNA targets. Anal Chim Acta 2021;1154:338346.

25. Biswal BP, Shinde DB, Pillai VK, Banerjee R. Stabilization of graphene quantum dots (GQDs) by encapsulation inside zeolitic imidazolate framework nanocrystals for photoluminescence tuning. Nanoscale 2013;5:10556-61.

26. Swarnkar A, Marshall AR, Sanehira EM, et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 2016;354:92-5.

27. Kar MR, Ray S, Patra BK, Bhaumik S. State of the art and prospects of metal halide perovskite core@shell nanocrystals and nanocomposites. Mater Today Chem 2021;20:100424.

28. Yee PY, Brittman S, Mahadik NA, et al. Cu2-x S/PbS core/shell nanocrystals with improved chemical stability. Chem Mater 2021;33:6685-91.

29. Zhao Y, Xie C, Zhang X, Yang P. CsPbX3 quantum dots embedded in zeolitic imidazolate framework-8 microparticles for bright white light-emitting devices. ACS Appl Nano Mater 2021;4:5478-85.

30. Pham T, Lee B, Kim J, Lee C. Enhancement of CO2 capture by using synthesized nano-zeolite. J Taiwan Inst Chem Eng 2016;64:220-6.

31. Zahmakiran M. Preparation and characterization of LTA-type zeolite framework dispersed ruthenium nanoparticles and their catalytic application in the hydrolytic dehydrogenation of ammonia-borane for efficient hydrogen generation. Mater Sci Eng B 2012;177:606-13.

32. Frentzel-beyme L, Kloß M, Pallach R, et al. Porous purple glass - a cobalt imidazolate glass with accessible porosity from a meltable cobalt imidazolate framework. J Mater Chem A 2019;7:985-90.

33. Hou J, Ríos Gómez ML, Krajnc A, et al. Halogenated metal-organic framework glasses and liquids. J Am Chem Soc 2020;142:3880-90.

34. Fang Q, Gu S, Zheng J, Zhuang Z, Qiu S, Yan Y. 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis. Angew Chem Int Ed 2014;53:2878-82.

35. Bhunia S, Deo KA, Gaharwar AK. 2D covalent organic frameworks for biomedical applications. Adv Funct Mater 2020;30:2002046.

36. Chedid G, Yassin A. Recent trends in covalent and metal organic frameworks for biomedical applications. Nanomaterials 2018;8:916.

37. Feng L, Qian C, Zhao Y. Recent advances in covalent organic framework-based nanosystems for bioimaging and therapeutic applications. ACS Mater Lett 2020;2:1074-92.

38. Ekimov A, Efros A, Onushchenko A. Quantum size effect in semiconductor microcrystals. Solid State Commun 1985;56:921-4.

39. Davis ME. Ordered porous materials for emerging applications. Nature 2002;417:813-21.

40. Kianfar E. Synthesis and characterization of AlPO4/ZSM-5 catalyst for methanol conversion to dimethyl ether. Russ J Appl Chem 2018;91:1711-20.

41. Yin T, Meng X, Jin L, Yang C, Liu N, Shi L. Prepared hydrophobic Y zeolite for adsorbing toluene in humid environment. Microporous Mesoporous Mater 2020;305:110327.

42. Campanile A, Liguori B, Ferone C, Caputo D, Aprea P. Zeolite-based monoliths for water softening by ion exchange/precipitation process. Sci Rep 2022;12:3686.

43. Wang S, Yu J, Zhao P, Guo S, Han S. One-step synthesis of water-soluble CdS quantum dots for silver-ion detection. ACS Omega 2021;6:7139-46.

44. Herron N, Wang Y, Eddy MM, et al. Structure and optical properties of cadmium sulfide superclusters in zeolite hosts. J Am Chem Soc 1989;111:530-40.

45. Moller K, Bein T, Herron N, Mahler W, Wang Y. Encapsulation of lead sulfide molecular clusters into solid matrixes. Structural analysis with X-ray absorption spectroscopy. Inorg Chem 1989;28:2914-9.

46. Jeong NC, Kim HS, Yoon KB. New insights into CdS quantum dots in zeolite-Y. J Phys Chem C 2007;111:10298-312.

47. Yin X, Zhang C, Guo Y, Yang Y, Xing Y, Que W. PbS QD-based photodetectors: future-oriented near-infrared detection technology. J Mater Chem C 2021;9:417-38.

48. Zheng S, Chen J, Johansson EMJ, Zhang X. PbS colloidal quantum dot inks for infrared solar cells. iScience 2020;23:101753.

49. Kim HS, Lee MH, Jeong NC, Lee SM, Rhee BK, Yoon KB. Very high third-order nonlinear optical activities of intrazeolite PbS quantum dots. J Am Chem Soc 2006;128:15070-1.

50. Kim HS, Yoon KB. Increase of third-order nonlinear optical activity of PbS quantum dots in zeolite Y by increasing cation size. J Am Chem Soc 2012;134:2539-42.

51. Liu Y, Li Y, Hu X, et al. Ligands for CsPbBr3 perovskite quantum dots: the stronger the better? Chem Eng J 2023;453:139904.

52. Sun J, Rabouw FT, Yang X, et al. Facile two-step synthesis of all-inorganic perovskite CsPbX3 (X = Cl, Br, and I) Zeolite-Y composite phosphors for potential backlight display application. Adv Funct Mater 2017;27:1704371.

53. Wang HC, Lin SY, Tang AC, et al. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew Chem Int Ed 2016;55:7924-9.

54. Kim JY, Shim KI, Han JW, Joo J, Heo NH, Seff K. Quantum dots of [Na4Cs6PbBr4]8+, water stable in Zeolite X, luminesce sharply in the green. Adv Mater 2020;32:e2001868.

55. Côté AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM. Porous, crystalline, covalent organic frameworks. Science 2005;310:1166-70.

56. Ding SY, Wang W. Covalent organic frameworks (COFs): from design to applications. Chem Soc Rev 2013;42:548-68.

57. Wang H, Yang Y, Yuan X, et al. Structure-performance correlation guided applications of covalent organic frameworks. Mater Today 2022;53:106-33.

58. Geng K, He T, Liu R, et al. Covalent organic frameworks: design, synthesis, and functions. Chem Rev 2020;120:8814-933.

59. Binu PJ, Ganesh RC, Muthukumaran S. Crystal structure, energy gap and photoluminescence investigation of Mn2+/Cr3+-doped ZnS nanostructures by precipitation method. J Mater Sci Mater Electron 2021;32:23174-88.

60. Liu Z, Hou J, He Q, Luo X, Huo D, Hou C. New application of Mn-doped ZnS quantum dots: phosphorescent sensor for the rapid screening of chloramphenicol and tetracycline residues. Anal Methods 2020;12:3513-22.

61. Li F, Gao J, Wu H, Li Y, He X, Chen L. A highly selective and sensitive fluorescent sensor based on molecularly imprinted polymer-functionalized Mn-doped ZnS quantum dots for detection of roxarsone in feeds. Nanomaterials 2022;12:2997.

62. Zhang Y, Yuan X, Jiang W, Liu H. Determination of nereistoxin-related insecticide via quantum-dots-doped covalent organic frameworks in a molecularly imprinted network. Mikrochim Acta 2020;187:464.

63. Wang Y, Wang Y, Liu H. A novel fluorescence and SPE adsorption nanomaterials of molecularly imprinted polymers based on quantum dot-grafted covalent organic frameworks for the high selectivity and sensitivity detection of ferulic acid. Nanomaterials 2019;9:305.

64. Jana J, Lee HJ, Chung JS, Kim MH, Hur SH. Blue emitting nitrogen-doped carbon dots as a fluorescent probe for nitrite ion sensing and cell-imaging. Anal Chim Acta 2019;1079:212-9.

65. Wang J, Sheng Li R, Zhi Zhang H, Wang N, Zhang Z, Huang CZ. Highly fluorescent carbon dots as selective and visual probes for sensing copper ions in living cells via an electron transfer process. Biosens Bioelectron 2017;97:157-63.

66. Fowley C, McCaughan B, Devlin A, Yildiz I, Raymo FM, Callan JF. Highly luminescent biocompatible carbon quantum dots by encapsulation with an amphiphilic polymer. Chem Commun 2012;48:9361-3.

67. Sharma A, Das J. Small molecules derived carbon dots: synthesis and applications in sensing, catalysis, imaging, and biomedicine. J Nanobiotechnol 2019;17:92.

68. Wang F, Pang S, Wang L, Li Q, Kreiter M, Liu C. One-step synthesis of highly luminescent carbon dots in noncoordinating solvents. Chem Mater 2010;22:4528-30.

69. Chen S, Sun T, Zheng M, Xie Z. Carbon dots based nanoscale covalent organic frameworks for photodynamic therapy. Adv Funct Mater 2020;30:2004680.

70. Fonseca J, Gong T, Jiao L, Jiang H. Metal-organic frameworks (MOFs) beyond crystallinity: amorphous MOFs, MOF liquids and MOF glasses. J Mater Chem A 2021;9:10562-611.

71. Hou J, Sutrisna PD, Wang T, et al. Unraveling the interfacial structure-performance correlation of flexible metal-organic framework membranes on polymeric substrates. ACS Appl Mater Interfaces 2019;11:5570-7.

72. Baumann AE, Burns DA, Liu B, Thoi VS. Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Commun Chem 2019:2.

73. Howarth AJ, Peters AW, Vermeulen NA, Wang TC, Hupp JT, Farha OK. Best practices for the synthesis, activation, and characterization of metal-organic frameworks. Chem Mater 2017;29:26-39.

74. Hong DH, Shim HS, Ha J, Moon HR. MOF-on-MOF architectures: applications in separation, catalysis, and sensing. Bull Korean Chem Soc 2021;42:956-69.

75. Kalaj M, Bentz KC, Ayala S Jr, et al. MOF-polymer hybrid materials: from simple composites to tailored architectures. Chem Rev 2020;120:8267-302.

76. Kwon O, Kim JY, Park S, et al. Computer-aided discovery of connected metal-organic frameworks. Nat Commun 2019;10:3620.

77. Tripathy SP, Subudhi S, Parida K. Inter-MOF hybrid (IMOFH): a concise analysis on emerging core-shell based hierarchical and multifunctional nanoporous materials. Coord Chem Rev 2021;434:213786.

78. Chen P, Bai Y, Wang S, Lyu M, Yun J, Wang L. Perovskite solar cells: in situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells. Adv Funct Mater 2018;28:1870113.

79. Peng J, Kremer F, Walter D, et al. Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent. Nature 2022;601:573-8.

80. Shi L, Wang J, Zhou L, Chen Y, Yan J, Dai C. Facile in-situ preparation of MAPbBr3@UiO-66 composites for information encryption and decryption. J Solid State Chem 2020;282:121062.

81. Zhang Y, Lyu M, Qiu T, et al. Halide perovskite single crystals: optoelectronic applications and strategical approaches. Energies 2020;13:4250.

82. He R, Ren S, Chen C, et al. Wide-bandgap organic-inorganic hybrid and all-inorganic perovskite solar cells and their application in all-perovskite tandem solar cells. Energy Environ Sci 2021;14:5723-59.

83. Lu H, Krishna A, Zakeeruddin SM, Grätzel M, Hagfeldt A. Compositional and interface engineering of organic-inorganic lead halide perovskite solar cells. iScience 2020;23:101359.

84. Kong Z, Liao J, Dong Y, et al. Core@Shell CsPbBr3@Zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction. ACS Energy Lett 2018;3:2656-62.

85. Yuan S, Zou L, Qin JS, et al. Construction of hierarchically porous metal-organic frameworks through linker labilization. Nat Commun 2017;8:15356.

86. Aubert T, Golovatenko AA, Samoli M, et al. General expression for the size-dependent optical properties of quantum dots. Nano Lett 2022;22:1778-85.

87. Wang T, Gao L, Hou J, et al. Rational approach to guest confinement inside MOF cavities for low-temperature catalysis. Nat Commun 2019;10:1340.

88. Jiang Z, Xue W, Huang H, Zhu H, Sun Y, Zhong C. Mechanochemistry-assisted linker exchange of metal-organic framework for efficient kinetic separation of propene and propane. Chem Eng J 2023;454:140093.

89. Qi SC, Qian XY, He QX, et al. Generation of hierarchical porosity in metal-organic frameworks by the modulation of cation valence. Angew Chem Int Ed 2019;58:10104-9.

90. Yang P, Mao F, Li Y, Zhuang Q, Gu J. Hierarchical porous Zr-based MOFs synthesized by a facile monocarboxylic acid etching strategy. Chemistry 2018;24:2962-70.

91. Qiao GY, Guan D, Yuan S, et al. Perovskite quantum dots encapsulated in a mesoporous metal-organic framework as synergistic photocathode materials. J Am Chem Soc 2021;143:14253-60.

92. Hou J, Sapnik AF, Bennett TD. Metal-organic framework gels and monoliths. Chem Sci 2020;11:310-23.

93. Tuffnell JM, Ashling CW, Hou J, et al. Novel metal-organic framework materials: blends, liquids, glasses and crystal-glass composites. Chem Commun 2019;55:8705-15.

94. Hou J, Ashling CW, Collins SM, et al. Metal-organic framework crystal-glass composites. Nat Commun 2019;10:2580.

95. Hou J, Chen P, Shukla A, et al. Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses. Science 2021;374:621-5.

96. Keen DA, Bennett TD. Structural investigations of amorphous metal-organic frameworks formed via different routes. Phys Chem Chem Phys 2018;20:7857-61.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/