REFERENCES
1. Schwab K. The fourth industrial revolution. Editor. Franco Angeli; 2016. p.216.
2. Trendov NM, Varas S, Zeng M. Digital technologies in agriculture and rural areas. Publisher: FAO, Rome, Italy; 2019. p. 152.
3. Klerkx L, Jakku E, Labarthe P. A review of social science on digital agriculture, smart farming and agriculture 4.0: new contributions and a future research agenda. NJAS-WAGEN J LIFE SC 2019;90-91:1-16.
5. Mittleman D, Jacobsen R, Nuss M. T-ray imaging. IEEE J Select Topics Quantum Electron 1996;2:679-92.
7. Afsharinejad A, Davy A, Naftaly M. Variability of terahertz transmission measured in live plant leaves. IEEE Geosci Remote Sensing Lett 2017;14:636-8.
8. Santesteban LG, Palacios I, Miranda C, Iriarte JC, Royo JB, Gonzalo R. Terahertz time domain spectroscopy allows contactless monitoring of grapevine water status. Front Plant Sci 2015;6:404.
9. Zahid A, T. Abbas H, Imran MA, et al. Characterization and water content estimation method of living plant leaves using terahertz waves. Appl Sci 2019;9:2781.
10. Higa S, Kobori H, Tsuchikawa S. Mapping of leaf water content using near-infrared hyperspectral imaging. Appl Spectrosc 2013;67:1302-7.
11. Song Z, Yan S, Zang Z, et al. Temporal and spatial variability of water status in plant leaves by terahertz imaging. IEEE Trans THz Sci Technol 2018;8:520-7.
12. Hadjiloucas S, Karatzas L, Bowen J. Measurements of leaf water content using terahertz radiation. IEEE Trans Microwave Theory Techn 1999;47:142-9.
13. De Cumis RUS, Xu JH, Masini L, et al. Terahertz confocal microscopy with a quantum cascade laser source. Opt Express 2012;20:21924-31.
15. Saha SC, Grant JP, Ma Y, Khalid A, Hong F, Cumming DRS. Terahertz frequency-domain spectroscopy method for vector characterization of liquid using an artificial dielectric. IEEE Trans Terahertz Sci Technol 2012;2:113-22.
16. Jördens C, Scheller M, Breitenstein B, Selmar D, Koch M. Evaluation of leaf water status by means of permittivity at terahertz frequencies. J Biol Phys 2009;35:255-64.
17. Born N, Behringer D, Liepelt S, et al. Monitoring plant drought stress response using terahertz time-domain spectroscopy. Plant Physiol 2014;164:1571-7.
19. Doria A, Gallerano GP, Giovenale E, et al. An alternative phase-sensitive THz imaging technique for art conservation: history and new developments at the ENEA center of frascati. Appl Sci 2020;10:7661.
20. Doria A, Gallerano GP, Giovenale E, et al. A portable THz imaging system for art conservation. Paper presented at the 2018 1st international workshop on mobile terahertz systems, IWMTS; 2018.
21. Dressel M, Drichko N, Gorshunov B, Pimenov A. THz spectroscopy of superconductors. IEEE J Select Topics Quantum Electron 2008;14:399-406.
22. Kaindl RA, Carnahan MA, Orenstein J, et al. Far-infrared optical conductivity gap in superconducting MgB2 films. Phys Rev Lett 2002;88:270031-270034.
23. Beck M, Klammer M, Lang S, et al. Energy-gap dynamics of superconducting NbN thin films studied by time-resolved terahertz spectroscopy. Phys Rev Lett 2011;107:177007.
25. Greco M, Giovenale E, Leccese F, et al. .
26. Gente R, Koch M. Monitoring leaf water content with THz and sub-THz waves. Plant Methods 2015;11:15.