REFERENCES
1. Rajabi, R.; Sun, S.; Billings, A.; Mattick, V. F.; Khan, J.; Huang, K. Insights into chemical and electrochemical interactions between Zn anode and electrolytes in aqueous Zn−ion batteries. J. Electrochem. Soc. 2022, 169, 110536.
2. Pan, H.; Shao, Y.; Yan, P.; et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy. 2016, 1, BFnenergy201639.
3. Guo, X.; Zhou, J.; Bai, C.; Li, X.; Fang, G.; Liang, S. Zn/MnO2 battery chemistry with dissolution-deposition mechanism. Mater. Today. Energy. 2020, 16, 100396.
4. Lu, Y.; Zhu, T.; van, B. W.; Stefik, M.; Huang, K. A high performing Zn-ion battery cathode enabled by in situ transformation of V2O5 atomic layers. Angew. Chem. Int. Ed. Engl. 2020, 59, 17004-11.
5. Wang, L.; Huang, K. W.; Chen, J.; Zheng, J. Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes. Sci. Adv. 2019, 5, eaax4279.
6. Zhao, W.; Kong, Q.; Wu, X.; et al. ε-MnO2@C cathode with high stability for aqueous zinc-ion batteries. Appl. Surf. Sci. 2022, 605, 154685.
7. Chen, C.; Shi, M.; Zhao, Y.; Yang, C.; Zhao, L.; Yan, C. Al-intercalated MnO2 cathode with reversible phase transition for aqueous Zn-ion batteries. Chem. Eng. J. 2021, 422, 130375.
8. Li, G.; Sun, L.; Zhang, S.; et al. Developing cathode materials for aqueous zinc ion batteries: challenges and practical prospects. Adv. Funct. Mater. 2024, 34, 2301291.
9. Wu, F.; Chen, Y.; Chen, Y.; et al. Achieving highly reversible zinc anodes via N, N-dimethylacetamide enabled Zn-ion solvation regulation. Small 2022, 18, e2202363.
10. Hao, J.; Yuan, L.; Ye, C.; et al. Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem. Int. Ed. Engl. 2021, 60, 7366-75.
11. Hou, Z.; Tan, H.; Gao, Y.; Li, M.; Lu, Z.; Zhang, B. Tailoring desolvation kinetics enables stable zinc metal anodes. J. Mater. Chem. A. 2020, 8, 19367-74.
12. Qin, R.; Wang, Y.; Zhang, M.; et al. Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries. Nano. Energy. 2021, 80, 105478.
13. Chang, N.; Li, T.; Li, R.; et al. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy. Environ. Sci. 2020, 13, 3527-35.
14. Jia, H.; Jiang, X.; Wang, Y.; Lam, Y.; Shi, S.; Liu, G. Hybrid Co‐solvent‐induced high‐entropy electrolyte: regulating of hydrated Zn2+ solvation structures for excellent reversibility and wide temperature adaptability. Adv. Energy. Mater. 2024, 14, 2304285.
16. Gaussian 16. 2016. https://gaussian.com/gaussian16/. (accessed 2025-02-07).
17. Lu, T.; Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580-92.
18. Lu, T. A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J. Chem. Phys. 2024, 161, 082503.
19. Sobtop: A tool of generating forcefield parameters and GROMACS topology file. http://sobereva.com/soft/Sobtop. (accessed 2025-02-07)
20. Bayly, C. I.; Cieplak, P.; Cornell, W.; Kollman, P. A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 1993, 97, 10269-80.
21. Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157-74.
22. Jiang, Y.; Wan, Z.; He, X.; Yang, J. Fine-tuning electrolyte concentration and metal-organic framework surface toward actuating fast Zn2+ dehydration for aqueous Zn-ion batteries. Angew. Chem. Int. Ed. Engl. 2023, 62, e202307274.
23. Yue, J.; Chen, S.; Yang, J.; et al. Multi-ion engineering strategies toward high performance aqueous zinc-based batteries. Adv. Mater. 2024, 36, e2304040.
24. Sun, S.; Yang, X.; Billings, A.; Huang, K. Understanding the critical bulk properties of Zn-salt solution electrolytes for aqueous Zn-ion batteries. Chem. Mater. 2024, 36, 6805-15.
25. Bullerjahn, J. T.; von, B. S.; Heidari, M.; Hénin, J.; Hummer, G. Unwrapping NPT simulations to calculate diffusion coefficients. J. Chem. Theory. Comput. 2023, 19, 3406-17.
26. von Bülow S, Bullerjahn JT, Hummer G. Systematic errors in diffusion coefficients from long-time molecular dynamics simulations at constant pressure. J. Chem. Phys. 2020, 153, 021101.
27. Huang, K.; Goodenough, J. B. Transport of charged particles in a solid oxide fuel cell (SOFC). In: Solid oxide fuel cell technology. Elsevier; 2009. pp. 41-66. https://books.google.com/books?hl=zh-CN&lr=&id=c46kAgAAQBAJ&oi=fnd&pg=PP1&dq=Solid+oxide+fuel+cell+technology.&ots=BaY0QiCZiL&sig=Vj11zv61FcxKTCHjzITGhj9uVXo#v=onepage&q=Solid%20oxide%20fuel%20cell%20technology.&f=false. (accessed 2025-02-07).
28. Cao, X.; Rong, C.; Zhong, A.; Lu, T.; Liu, S. Molecular acidity: an accurate description with information-theoretic approach in density functional reactivity theory. J. Comput. Chem. 2018, 39, 117-29.
29. Liu, S.; Pedersen, L. G. Estimation of molecular acidity via electrostatic potential at the nucleus and valence natural atomic orbitals. J. Phys. Chem. A. 2009, 113, 3648-55.
30. Liu, S.; Schauer, C. K.; Pedersen, L. G. Molecular acidity: a quantitative conceptual density functional theory description. J. Chem. Phys. 2009, 131, 164107.
31. Szwajczakaf, E.; Szymański, A. On the relation between mobility of lons and viscosity. the Walden’s Rule. Mol. Cryst. Liq. Cryst. 1986, 139, 253-61.
32. Wang, J.; Zhang, J.; Wu, J.; et al. Interfacial “single-atom-in-defects” catalysts accelerating Li+ desolvation kinetics for long-lifespan lithium-metal batteries. Adv. Mater. 2023, 35, e2302828.
33. Elliott, G. R.; Wanless, E. J.; Webber, G. B.; Andersson, G. G.; Craig, V. S. J.; Page, A. J. Dynamic ion correlations and ion-pair lifetimes in aqueous alkali metal chloride electrolytes. J. Phys. Chem. B. 2024, 128, 7438-44.
34. Yu, X.; Chen, M.; Li, Z.; et al. Unlocking dynamic solvation chemistry and hydrogen evolution mechanism in aqueous zinc batteries. J. Am. Chem. Soc. 2024, 146, 17103-13.