REFERENCES
1. Cruz-Martínez, H.; Rojas-Chávez, H.; Matadamas-Ortiz, P.; et al. Current progress of Pt-based ORR electrocatalysts for PEMFCs: an integrated view combining theory and experiment. Mater. Today. Phys. 2021, 19, 100406.
2. Li, C.; Tan, H.; Lin, J.; et al. Emerging Pt-based electrocatalysts with highly open nanoarchitectures for boosting oxygen reduction reaction. Nano. Today. 2018, 21, 91-105.
3. Bharadwaj, N.; Das, S.; Pathak, B. Role of morphology of platinum-based nanoclusters in ORR/OER activity for nonaqueous Li–air battery applications. ACS. Appl. Energy. Mater. 2022, 5, 12561-70.
4. Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B. Environ. 2005, 56, 9-35.
5. Zhang, J.; Yuan, Y.; Gao, L.; Zeng, G.; Li, M.; Huang, H. Stabilizing Pt-based electrocatalysts for oxygen reduction reaction: fundamental understanding and design strategies. Adv. Mater. 2021, 33, e2006494.
6. Wang, Y.; Wang, D.; Li, Y. A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts. SmartMat 2021, 2, 56-75.
7. Sun, T.; Tang, Z.; Zang, W.; et al. Ferromagnetic single-atom spin catalyst for boosting water splitting. Nat. Nanotechnol. 2023, 18, 763-71.
8. Nguyen, T. H.; Tran, D. T.; Kim, N. H.; Lee, J. H. Iron single atom–iron nanoparticles dual-deposited nitrogen-doped graphene hybrid as an innovative catalyst to enhance the oxygen reduction reaction. Int. J. Hydrogen. Energy. 2023, 48, 32294-303.
9. ul, H. M.; Wu, D.; Ajmal, Z.; et al. Derived-2D Nb4C3Tx sheets with interfacial self-assembled Fe-N-C single-atom catalyst for electrocatalysis in water splitting and durable zinc-air battery. Appl. Catal. B. Environ. 2024, 344, 123632.
10. Pan, Y.; Liu, S.; Sun, K.; et al. A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site: a superior trifunctional catalyst for overall water splitting and Zn-air batteries. Angew. Chem. Int. Ed. Engl. 2018, 57, 8614-8.
11. Inoue, Y. Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10 -related electronic configurations. Energy. Environ. Sci. 2009, 2, 364.
12. Xiang, S.; Zhang, Z.; Wu, Z.; et al. 3D heterostructured Ti-based Bi2MoO6/Pd/TiO2 photocatalysts for high-efficiency solar light driven photoelectrocatalytic hydrogen generation. ACS. Appl. Energy. Mater. 2019, 2, 558-68.
13. Serrano-Ruiz, J. C.; Luque, R.; Sepúlveda-Escribano, A. Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing. Chem. Soc. Rev. 2011, 40, 5266-81.
14. Beale, A. M.; Gao, F.; Lezcano-Gonzalez, I.; Peden, C. H.; Szanyi, J. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chem. Soc. Rev. 2015, 44, 7371-405.
16. Iyyappan, J.; Gaddala, B.; Gnanasekaran, R.; Gopinath, M.; Yuvaraj, D.; Kumar, V. Critical review on wastewater treatment using photo catalytic advanced oxidation process: role of photocatalytic materials, reactor design and kinetics. Case. Stud. Chem. Environ. Eng. 2024, 9, 100599.
17. Xu, J.; Zheng, X.; Feng, Z.; et al. Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2. Nat. Sustain. 2021, 4, 233-41.
18. He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z. Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources. Chem. Rev. 2019, 119, 4471-568.
19. Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G. O.; Pérez-Ramírez, J. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy. Environ. Sci. 2013, 6, 3112.
20. Ding, Y.; Zhang, S.; Liu, B.; Zheng, H.; Chang, C.; Ekberg, C. Recovery of precious metals from electronic waste and spent catalysts: a review. Resour. Conserv. Recycl. 2019, 141, 284-98.
21. Kim, J. H.; Shin, D.; Lee, J.; et al. A general strategy to atomically dispersed precious metal catalysts for unravelling their catalytic trends for oxygen reduction reaction. ACS. Nano. 2020, 14, 1990-2001.
22. Fang, Y.; Guo, Y. Copper-based non-precious metal heterogeneous catalysts for environmental remediation. Chinese. J. Catal. 2018, 39, 566-82.
23. Bhatt, M. D.; Lee, J. Y. Advancement of platinum (Pt)-free (non-Pt precious metals) and/or metal-free (non-precious-metals) electrocatalysts in energy applications: a review and perspectives. Energy. Fuels. 2020, 34, 6634-95.
24. Li, J.; Stephanopoulos, M. F.; Xia, Y. Introduction: heterogeneous single-atom catalysis. Chem. Rev. 2020, 120, 11699-702.
25. Yang, X. F.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740-8.
26. Lou, Y.; Xu, J.; Zhang, Y.; Pan, C.; Dong, Y.; Zhu, Y. Metal-support interaction for heterogeneous catalysis: from nanoparticles to single atoms. Mater. Today. Nano. 2020, 12, 100093.
27. Zhang, Y.; Yang, J.; Ge, R.; et al. The effect of coordination environment on the activity and selectivity of single-atom catalysts. Coord. Chem. Rev. 2022, 461, 214493.
28. Ji, S.; Chen, Y.; Wang, X.; Zhang, Z.; Wang, D.; Li, Y. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900-55.
29. Chen, W.; Ma, B.; Zou, R. Rational design and controlled synthesis of MOF-derived single-atom catalysts. Acc. Mater. Res.2025.
30. Kan, D.; Lian, R.; Wang, D.; et al. Screening effective single-atom ORR and OER electrocatalysts from Pt decorated MXenes by first-principles calculations. J. Mater. Chem. A. 2020, 8, 17065-77.
31. Kan, D.; Wang, D.; Zhang, X.; et al. Rational design of bifunctional ORR/OER catalysts based on Pt/Pd-doped Nb2CT2 MXene by first-principles calculations. J. Mater. Chem. A. 2020, 8, 3097-108.
32. Zhang, X.; Xia, Z.; Li, H.; Yu, S.; Wang, S.; Sun, G. Theoretical study of the strain effect on the oxygen reduction reaction activity and stability of FeNC catalyst. New. J. Chem. 2020, 44, 6818-24.
33. Zhang, X.; Zhang, Y.; Cheng, C.; Yang, Z.; Hermansson, K. Tuning the ORR activity of Pt-based Ti2CO2 MXenes by varying the atomic cluster size and doping with metals. Nanoscale 2020, 12, 12497-507.
34. Wei, B.; Fu, Z.; Legut, D.; et al. Rational design of highly stable and active MXene-based bifunctional ORR/OER double-atom catalysts. Adv. Mater. 2021, 33, e2102595.
35. Zheng, J.; Sun, X.; Qiu, C.; et al. High-throughput screening of hydrogen evolution reaction catalysts in MXene materials. J. Phys. Chem. C. 2020, 124, 13695-705.
36. Ma, N.; Zhang, Y.; Wang, Y.; et al. Machine learning-assisted exploration of the intrinsic factors affecting the catalytic activity of ORR/OER bifunctional catalysts. Appl. Surf. Sci. 2023, 628, 157225.
37. Park, N. H.; Manica, M.; Born, J.; et al. Artificial intelligence driven design of catalysts and materials for ring opening polymerization using a domain-specific language. Nat. Commun. 2023, 14, 3686.
38. Mazheika, A.; Geske, M.; Müller, M.; Schunk, S.; Rosowski, F.; Kraehnert, R. Data-driven design of catalytic materials in methane oxidation based on a site isolation concept. ACS. Catal. 2024, 14, 12297-309.
39. Tamtaji, M.; Gao, H.; Hossain, M. D.; et al. Machine learning for design principles for single atom catalysts towards electrochemical reactions. J. Mater. Chem. A. 2022, 10, 15309-31.
40. Sun, J.; Tu, R.; Xu, Y.; et al. Machine learning aided design of single-atom alloy catalysts for methane cracking. Nat. Commun. 2024, 15, 6036.
41. Fu, H.; Li, K.; Zhang, C.; et al. Machine-learning-assisted optimization of a single-atom coordination environment for accelerated fenton catalysis. ACS. Nano. 2023, 17, 13851-60.
42. Tamtaji, M.; Chen, S.; Hu, Z.; Goddard, I. W. A.; Chen, G. A surrogate machine learning model for the design of single-atom catalyst on carbon and porphyrin supports towards electrochemistry. J. Phys. Chem. C. 2023, 127, 9992-10000.
43. Gu, G. H.; Noh, J.; Kim, S.; Back, S.; Ulissi, Z.; Jung, Y. Practical deep-learning representation for fast heterogeneous catalyst screening. J. Phys. Chem. Lett. 2020, 11, 3185-91.
44. Mueller, T.; Kusne, A. G.; Ramprasad, R. Machine learning in materials science. In: Parrill AL, Lipkowitz KB, editors. Reviews in computational chemistry. Wiley; 2016. pp. 186-273.
45. Raccuglia, P.; Elbert, K. C.; Adler, P. D.; et al. Machine-learning-assisted materials discovery using failed experiments. Nature 2016, 533, 73-6.
46. Li, H.; Zhang, Z.; Liu, Z. Application of artificial neural networks for catalysis: a review. Catalysts 2017, 7, 306.
47. Pillai, H. S.; Li, Y.; Wang, S. H.; et al. Interpretable design of Ir-free trimetallic electrocatalysts for ammonia oxidation with graph neural networks. Nat. Commun. 2023, 14, 792.
48. Janet, J. P.; Ramesh, S.; Duan, C.; Kulik, H. J. Accurate multiobjective design in a space of millions of transition metal complexes with neural-network-driven efficient global optimization. ACS. Cent. Sci. 2020, 6, 513-24.
49. Mu, Y.; Sun, L. Catalyst optimization design based on artificial neural network. AJRCoS 2022, 13, 1-12.
50. Hansen, K.; Montavon, G.; Biegler, F.; et al. Assessment and validation of machine learning methods for predicting molecular atomization energies. J. Chem. Theory. Comput. 2013, 9, 3404-19.
51. Mu, Y.; Wang, T.; Zhang, J.; Meng, C.; Zhang, Y.; Kou, Z. Single-atom catalysts: advances and challenges in metal-support interactions for enhanced electrocatalysis. Electrochem. Energy. Rev. 2022, 5, 145-86.
52. Zhang, J.; Yang, H.; Liu, B. Coordination engineering of single-atom catalysts for the oxygen reduction reaction: a review. Adv. Energy. Mater. 2021, 11, 2002473.
53. dos, S. T. C.; Mancera, R. C.; Rocha, M. V.; et al. CO2 and H2 adsorption on 3D nitrogen-doped porous graphene: experimental and theoretical studies. J. CO2. Util. 2021, 48, 101517.
54. Chen, B.; Li, L.; Liu, L.; Cao, J. Molecular simulation of adsorption properties of thiol-functionalized titanium dioxide (TiO2) nanostructure for heavy metal ions removal from aqueous solution. J. Mol. Liq. 2022, 346, 118281.
55. Thirumalai, H.; Kitchin, J. R. Investigating the reactivity of single atom alloys using density functional theory. Top. Catal. 2018, 61, 462-74.
56. He, C.; Lee, C. H.; Meng, L.; Chen, H. T.; Li, Z. Selective orbital coupling: an adsorption mechanism in single-atom catalysis. J. Am. Chem. Soc. 2024, 146, 12395-400.
57. Zhang, Y.; Wang, Y.; Ma, N.; Liang, B.; Xiong, Y.; Fan, J. Revealing the adsorption behavior of nitrogen reduction reaction on strained Ti2CO2 by a spin-polarized d-band center model. Small 2024, 20, e2306840.
58. Ma, N.; Li, N.; Wang, T.; Ma, X.; Fan, J. Strain engineering in the oxygen reduction reaction and oxygen evolution reaction catalyzed by Pt-doped Ti2CF2. J. Mater. Chem. A. 2022, 10, 1390-401.
59. Hutchison, P.; Rice, P. S.; Warburton, R. E.; Raugei, S.; Hammes-Schiffer, S. Multilevel computational studies reveal the importance of axial ligand for oxygen reduction reaction on Fe-N-C materials. J. Am. Chem. Soc. 2022, 144, 16524-34.
60. Xiao, G.; Lu, R.; Liu, J.; Liao, X.; Wang, Z.; Zhao, Y. Coordination environments tune the activity of oxygen catalysis on single atom catalysts: a computational study. Nano. Res. 2022, 15, 3073-81.
61. Zheng, X.; Chen, S.; Li, J.; et al. Two-dimensional carbon graphdiyne: advances in fundamental and application research. ACS. Nano. 2023, 17, 14309-46.
62. Ullah, F.; Ayub, K.; Mahmood, T. High performance SACs for HER process using late first-row transition metals anchored on graphyne support: a DFT insight. Int. J. Hydrogen. Energy. 2021, 46, 37814-23.
63. Liu, T.; Wang, G.; Bao, X. Electrochemical CO2 reduction reaction on 3d transition metal single-atom catalysts supported on graphdiyne: a DFT study. J. Phys. Chem. C. 2021, 125, 26013-20.
64. Li, J.; Li, K.; Li, Z.; et al. Capture of single Ag atoms through high-temperature-induced crystal plane reconstruction. Nat. Commun. 2024, 15, 3874.
65. Wang, Y. G.; Mei, D.; Glezakou, V. A.; Li, J.; Rousseau, R. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles. Nat. Commun. 2015, 6, 6511.
66. Fan, Q. Y.; Sun, J. J.; Wang, F.; Cheng, J. Adsorption-induced liquid-to-solid phase transition of Cu clusters in catalytic dissociation of CO2. J. Phys. Chem. Lett. 2020, 11, 7954-9.
67. Jia, C.; Sun, Q.; Liu, R.; et al. Challenges and opportunities for single-atom electrocatalysts: from lab-scale research to potential industry-level applications. Adv. Mater. 2024, 36, e2404659.
68. Zhuo, H. Y.; Zhang, X.; Liang, J. X.; Yu, Q.; Xiao, H.; Li, J. Theoretical understandings of graphene-based metal single-atom catalysts: stability and catalytic performance. Chem. Rev. 2020, 120, 12315-41.
69. Di Liberto G, Giordano L, Pacchioni G. Predicting the stability of single-atom catalysts in electrochemical reactions. ACS. Catal. 2024, 14, 45-55.
70. Tan, S.; Ji, Y.; Li, Y. Single-atom electrocatalysis for hydrogen evolution based on the constant charge and constant potential models. J. Phys. Chem. Lett. 2022, 13, 7036-42.
71. Cui, Y.; Ren, C.; Wu, M.; et al. Structure-stability relation of single-atom catalysts under operating conditions of CO2 reduction. J. Am. Chem. Soc. 2024, 146, 29169-76.
72. Han, Y.; Xu, H.; Li, Q.; Du, A.; Yan, X. DFT-assisted low-dimensional carbon-based electrocatalysts design and mechanism study: a review. Front. Chem. 2023, 11, 1286257.
73. Zhang, D.; Li, H. The potential of zero charge and solvation effects on single-atom M–N–C catalysts for oxygen electrocatalysis. J. Mater. Chem. A. 2024, 12, 13742-50.
74. Liu, T.; Wang, Y.; Li, Y. How pH affects the oxygen reduction reactivity of Fe–N–C materials. ACS. Catal. 2023, 13, 1717-25.
75. Unke, O. T.; Chmiela, S.; Sauceda, H. E.; et al. Machine learning force fields. Chem. Rev. 2021, 121, 10142-86.
76. Hu, J.; Zhou, L.; Jiang, J. Efficient machine learning force field for large-scale molecular simulations of organic systems. CCS Chem2024.
77. Zhang, D.; Yi, P.; Lai, X.; Peng, L.; Li, H. Active machine learning model for the dynamic simulation and growth mechanisms of carbon on metal surface. Nat. Commun. 2024, 15, 344.
78. Quan, X.; Cheng, M.; Wang, K.; et al. High-throughput screening technologies of efficient catalysts for the ammonia economy. ChemCatChem 2025, 17, e202401001.
79. Han, Z. K.; Sarker, D.; Ouyang, R.; Mazheika, A.; Gao, Y.; Levchenko, S. V. Single-atom alloy catalysts designed by first-principles calculations and artificial intelligence. Nat. Commun. 2021, 12, 1833.
80. Wang, Y.; Hu, R.; Li, Y.; Wang, F.; Shang, J.; Shui, J. High-throughput screening of carbon-supported single metal atom catalysts for oxygen reduction reaction. Nano. Res. 2022, 15, 1054-60.
81. Yue, Y.; Chen, Y.; Zhang, X.; Qin, J.; Zhang, X.; Liu, R. High-throughput screening of highly active and selective single-atom catalysts for ammonia synthesis on WB2 (0 0 1) surface. Appl. Surf. Sci. 2022, 606, 154935.
82. Xue, Z.; Tan, R.; Tian, J.; Hou, H.; Zhang, X.; Zhao, Y. Unraveling the activity trends of T-C2N based single-atom catalysts for electrocatalytic nitrate reduction via high-throughput screening. J. Colloid. Interface. Sci. 2024, 674, 353-60.
83. Nandy, A.; Duan, C.; Taylor, M. G.; Liu, F.; Steeves, A. H.; Kulik, H. J. Computational discovery of transition-metal complexes: from high-throughput screening to machine learning. Chem. Rev. 2021, 121, 9927-10000.
84. Shen, L.; Zhou, J.; Yang, T.; Yang, M.; Feng, Y. P. High-throughput computational discovery and intelligent design of two-dimensional functional materials for various applications. Acc. Mater. Res. 2022, 3, 572-83.
85. Xu, D.; Zhang, Q.; Huo, X.; Wang, Y.; Yang, M. Advances in data-assisted high-throughput computations for material design. Mater. Genome. Eng. Adv. 2023, 1, e11.
86. Ma, N.; Wang, Y.; Zhang, Y.; Liang, B.; Zhao, J.; Fan, J. First-principles screening of Pt doped Ti2CNL (N = O, S and Se, L = F, Cl, Br and I) as high-performance catalysts for ORR/OER. Appl. Surf. Sci. 2022, 596, 153574.
87. Liu, Y.; Zhao, T.; Ju, W.; Shi, S. Materials discovery and design using machine learning. J. Materiom. 2017, 3, 159-77.
88. Wei, J.; Chu, X.; Sun, X.; et al. Machine learning in materials science. InfoMat 2019, 1, 338-58.
89. Chen, H.; Zheng, Y.; Li, J.; Li, L.; Wang, X. AI for nanomaterials development in clean energy and carbon capture, utilization and storage (CCUS). ACS. Nano. 2023, 17, 9763-92.
90. Chen, A.; Zhang, X.; Chen, L.; Yao, S.; Zhou, Z. A machine learning model on simple features for CO2 reduction electrocatalysts. J. Phys. Chem. C. 2020, 124, 22471-8.
91. Zhang, Y.; Wang, Y.; Ma, N.; Fan, J. Directly predicting N2 electroreduction reaction free energy using interpretable machine learning with non-DFT calculated features. J. Energy. Chem. 2024, 97, 139-48.
92. Shi, Y.; Liang, Z. Machine learning accelerates the screening of single-atom catalysts towards CO2 electroreduction. Appl. Catal. A. Gen. 2024, 676, 119674.
93. Mou, L.; Du, J.; Li, Y.; Jiang, J.; Chen, L. Effective screening descriptors of metal–organic framework-supported single-atom catalysts for electrochemical CO2 reduction reactions: a computational study. ACS. Catal. 2024, 14, 12947-55.
94. Liu, S.; Chen, Y.; Chen, C.; et al. From single-atom catalysis to dual-atom catalysis: a comprehensive review of their application in advanced oxidation processes. Sep. Purif. Technol. 2024, 351, 127989.
95. Pritom, R.; Jayan, R.; Islam, M. M. Unraveling the effect of single atom catalysts on the charging behavior of nonaqueous Mg–CO2 batteries: a combined density functional theory and machine learning approach. J. Mater. Chem. A. 2024, 12, 2335-48.
96. Aklilu, E. G.; Bounahmidi, T. Machine learning applications in catalytic hydrogenation of carbon dioxide to methanol: a comprehensive review. Int. J. Hydrogen. Energy. 2024, 61, 578-602.
97. Wani, A. H.; Sharma, A. Optimizing the electrocatalytic discovery with machine learning as a novel paradigm. In: Patra S, Shukla SK, Sillanpää M, editors. Electrocatalytic materials. Cham: Springer Nature Switzerland; 2024. pp. 247-69.
98. Lan, T.; Wang, H.; An, Q. Enabling high throughput deep reinforcement learning with first principles to investigate catalytic reaction mechanisms. Nat. Commun. 2024, 15, 6281.
99. Ding, R.; Chen, J.; Chen, Y.; Liu, J.; Bando, Y.; Wang, X. Unlocking the potential: machine learning applications in electrocatalyst design for electrochemical hydrogen energy transformation. Chem. Soc. Rev. 2024, 53, 11390-461.
100. Sun, J.; Chen, A.; Guan, J.; et al. Interpretable machine learning-assisted high-throughput screening for understanding NRR electrocatalyst performance modulation between active center and C-N coordination. Energy. Environ. Mater. 2024, 7, e12693.
101. Günay M, Yıldırım R. Recent advances in knowledge discovery for heterogeneous catalysis using machine learning. Catal. Rev. 2021, 63, 120-64.
102. Sinha, P.; Jyothirmai, M.; Abraham, B. M.; Singh, J. K. Machine learning driven advancements in catalysis for predicting hydrogen evolution reaction activity. Mater. Chem. Phys. 2024, 326, 129805.
103. Karthikeyan, M.; Mahapatra, D. M.; Razak, A. S. A.; Abahussain, A. A.; Ethiraj, B.; Singh, L. Machine learning aided synthesis and screening of HER catalyst: present developments and prospects. Catal. Rev. 2024, 66, 997-1027.
104. Choudhary, K.; Decost, B.; Chen, C.; et al. Recent advances and applications of deep learning methods in materials science. npj. Comput. Mater. 2022, 8, 734.
105. Shi, M.; Mo, P.; Liu, J. Deep neural network for accurate and efficient atomistic modeling of phase change memory. IEEE. Electron. Device. Lett. 2020, 41, 365-8.
106. Gao, P.; Liu, Z.; Zhang, J.; Wang, J.; Henkelman, G. A fast, low-cost and simple method for predicting atomic/inter-atomic properties by combining a low dimensional deep learning model with a fragment based graph convolutional network. Crystals 2022, 12, 1740.
107. Toyao, T.; Maeno, Z.; Takakusagi, S.; Kamachi, T.; Takigawa, I.; Shimizu, K. Machine learning for catalysis informatics: recent applications and prospects. ACS. Catal. 2020, 10, 2260-97.
108. Wu, L.; Li, T. Machine learning enabled rational design of atomic catalysts for electrochemical reactions. Mater. Chem. Front. 2023, 7, 4445-59.
109. Zafari, M.; Kumar, D.; Umer, M.; Kim, K. S. Machine learning-based high throughput screening for nitrogen fixation on boron-doped single atom catalysts. J. Mater. Chem. A. 2020, 8, 5209-16.
110. Xiang, S.; Huang, P.; Li, J.; et al. Solving the structure of “single-atom” catalysts using machine learning - assisted XANES analysis. Phys. Chem. Chem. Phys. 2022, 24, 5116-24.
111. Gu, J.; Wang, Z.; Kuen, J.; et al. Recent advances in convolutional neural networks. Pattern. Recognit. 2018, 77, 354-77.
112. Yang, H.; Zhao, J.; Wang, Q.; et al. Convolutional neural networks and volcano plots: screening and prediction of two-dimensional single-atom catalysts. arXiv2024, arXiv:2402.03876. Available online: https://doi.org/10.48550/arXiv.2402.03876. (accessed 2025-02-07)
113. Mitchell, S.; Parés, F.; Faust, A. D.; et al. Automated image analysis for single-atom detection in catalytic materials by transmission electron microscopy. J. Am. Chem. Soc. 2022, 144, 8018-29.
114. Horwath, J. P.; Zakharov, D. N.; Mégret, R.; Stach, E. A. Understanding important features of deep learning models for segmentation of high-resolution transmission electron microscopy images. npj. Comput. Mater. 2020, 6, 363.
115. Aniceto-Ocaña, P.; Marqueses-Rodriguez, J.; Perez-Omil, J. A.; Calvino, J. J.; Castillo, C. E.; Lopez-Haro, M. Direct quantitative assessment of single-atom metal sites supported on powder catalysts. Commun. Mater. 2024, 5, 652.
116. Rossi, K.; Ruiz-Ferrando, A.; Akl, D. F.; et al. Quantitative description of metal center organization and interactions in single-atom catalysts. Adv. Mater. 2024, 36, e2307991.
117. Devi C, Sahaaya Arul Mary S, Karthikeyan N, Varalakshmi S, Talasila V, Rama Naidu G. Graph neural network-based multiscale thermal modeling for heterogeneous materials with complex structures. Therm. Sci. Eng. Prog. 2024, 55, 102983.
118. Shi, X.; Zhou, L.; Huang, Y.; Wu, Y.; Hong, Z. A review on the applications of graph neural networks in materials science at the atomic scale. Mater. Genome. Eng. Adv. 2024, 2, e50.
119. Price, C. C.; Singh, A.; Frey, N. C.; Shenoy, V. B. Efficient catalyst screening using graph neural networks to predict strain effects on adsorption energy. Sci. Adv. 2022, 8, eabq5944.
120. Boonpalit, K.; Wongnongwa, Y.; Prommin, C.; Nutanong, S.; Namuangruk, S. Data-driven discovery of graphene-based dual-atom catalysts for hydrogen evolution reaction with graph neural network and DFT calculations. ACS. Appl. Mater. Interfaces. 2023, 15, 12936-45.
121. Anstine, D. M.; Isayev, O. Generative models as an emerging paradigm in the chemical sciences. J. Am. Chem. Soc. 2023, 145, 8736-50.
122. Türk, H.; Landini, E.; Kunkel, C.; Margraf, J. T.; Reuter, K. Assessing deep generative models in chemical composition space. Chem. Mater. 2022, 34, 9455-67.
123. Suvarna, M.; Pérez-Ramírez, J. Embracing data science in catalysis research. Nat. Catal. 2024, 7, 624-35.
124. Niu, Z.; Zhao, W.; Deng, H.; et al. Generative artificial intelligence for designing multi-scale hydrogen fuel cell catalyst layer nanostructures. ACS. Nano. 2024, 18, 20504-17.
125. Park, J.; Kim, H.; Kang, Y.; Lim, Y.; Kim, J. From data to discovery: recent trends of machine learning in metal-organic frameworks. JACS. Au. 2024, 4, 3727-43.
126. Ishikawa, A. Heterogeneous catalyst design by generative adversarial network and first-principles based microkinetics. Sci. Rep. 2022, 12, 11657.
127. Wang, M.; Zhu, H. Machine learning for transition-metal-based hydrogen generation electrocatalysts. ACS. Catal. 2021, 11, 3930-7.
128. Tempke, R.; Musho, T. Autonomous design of new chemical reactions using a variational autoencoder. Commun. Chem. 2022, 5, 40.
129. Vignesh, R.; Balasubramani, V.; Sridhar, T. M. Machine learning for next-generation functional materials. In: Joshi N, Kushvaha V, Madhushri P, editors. Machine learning for advanced functional materials. Singapore: Springer Nature; 2023. pp. 199-219.
130. Fang, J.; Xie, M.; He, X.; et al. Machine learning accelerates the materials discovery. Mater. Today. Commun. 2022, 33, 104900.
131. Kim, S.; Noh, J.; Gu, G. H.; Aspuru-Guzik, A.; Jung, Y. Generative adversarial networks for crystal structure prediction. ACS. Cent. Sci. 2020, 6, 1412-20.
132. Xie, T.; Grossman, J. C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 2018, 120, 145301.
133. Li, X.; Yang, X.; Huang, Y.; Zhang, T.; Liu, B. Supported noble-metal single atoms for heterogeneous catalysis. Adv. Mater. 2019, 31, e1902031.
134. Liu, D.; He, Q.; Ding, S.; Song, L. Structural regulation and support coupling effect of single-atom catalysts for heterogeneous catalysis. Adv. Energy. Mater. 2020, 10, 2001482.
135. Dmitrieva, A. P.; Fomkina, A. S.; Tracey, C. T.; et al. AI and ML for selecting viable electrocatalysts: progress and perspectives. J. Mater. Chem. A. 2024, 12, 31074-102.
136. Benavides-Hernández, J.; Dumeignil, F. From characterization to discovery: artificial intelligence, machine learning and high-throughput experiments for heterogeneous catalyst design. ACS. Catal. 2024, 14, 11749-79.
137. Chen, L.; Chen, Z.; Yao, X.; et al. High-entropy alloy catalysts: high-throughput and machine learning-driven design. J. Mater. Inf. 2022, 2, 19.
138. Su, Y.; Wang, X.; Ye, Y.; et al. Automation and machine learning augmented by large language models in a catalysis study. Chem. Sci. 2024, 15, 12200-33.
139. Shields, B. J.; Stevens, J.; Li, J.; et al. Bayesian reaction optimization as a tool for chemical synthesis. Nature 2021, 590, 89-96.
140. Liu, X.; Fan, K.; Huang, X.; Ge, J.; Liu, Y.; Kang, H. Recent advances in artificial intelligence boosting materials design for electrochemical energy storage. Chem. Eng. J. 2024, 490, 151625.