REFERENCES
1. Chen, J. H.; Costan, E.; van, H. M. A.; Xu, Q.; Zandbergen, H. W. Atomic pillar-based nanoprecipitates strengthen AlMgSi alloys. Science 2006, 312, 416-9.
2. Zhang, J.; Zhou, D.; Pang, X.; et al. Deformation-induced concurrent formation of 9R phase and twins in a nanograined aluminum alloy. Acta. Mater. 2023, 244, 118540.
3. Raabe, D.; Ponge, D.; Uggowitzer, P. J.; et al. Making sustainable aluminum by recycling scrap: the science of “dirty” alloys. Prog. Mater. Sci. 2022, 128, 100947.
4. Liddicoat, P. V.; Liao, X. Z.; Zhao, Y.; et al. Nanostructural hierarchy increases the strength of aluminium alloys. Nat. Commun. 2010, 1, 63.
5. Costa Teixeira J, Cram D, Bourgeois L, Bastow T, Hill A, Hutchinson C. On the strengthening response of aluminum alloys containing shear-resistant plate-shaped precipitates. Acta. Mater. 2008, 56, 6109-22.
6. Simar, A.; Bréchet, Y.; de, M. B.; Denquin, A.; Pardoen, T. Sequential modeling of local precipitation, strength and strain hardening in friction stir welds of an aluminum alloy 6005A-T6. Acta. Mater. 2007, 55, 6133-43.
7. Ogura, T.; Otani, T.; Hirose, A.; Sato, T. Improvement of strength and ductility of an Al–Zn–Mg alloy by controlling grain size and precipitate microstructure with Mn and Ag addition. Mater. Sci. Eng. A. 2013, 580, 288-93.
8. Macías JG, Douillard T, Zhao L, Maire E, Pyka G, Simar A. Influence on microstructure, strength and ductility of build platform temperature during laser powder bed fusion of AlSi10Mg. Acta. Mater. 2020, 201, 231-43.
9. Chen, X.; Guo, M.; Du, J.; Zhuang, L. Synergistic mechanism of hetero-structured Al–Mg–Si–Cu–Zn–Fe–Mn alloys with greatly enhanced strength, ductility and formability. Mater. Sci. Eng. A. 2024, 910, 146893.
10. Ma, E.; Wu, X. Tailoring heterogeneities in high-entropy alloys to promote strength-ductility synergy. Nat. Commun. 2019, 10, 5623.
11. Ma, E.; Zhu, T. Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Mater. Today. 2017, 20, 323-31.
12. Du, J.; Liu, Y.; Zhang, Z.; et al. Mechanical behaviors of metallic alloys dominated by thermo-kinetic synergistic effects upon materials processing. Mater. Today. Commun. 2023, 37, 107218.
13. Hu, X.; Zhao, J.; Chen, Y.; et al. Structure-property modeling scheme based on optimized microstructural information by two-point statistics and principal component analysis. J. Mater. Inf. 2022, 2, 5.
14. Wang, W. Y.; Yin, J.; Chai, Z.; et al. Big data-assisted digital twins for the smart design and manufacturing of advanced materials: from atoms to products. J. Mater. Inf. 2022, 2, 1.
15. Fan, L.; Yang, T.; Zhao, Y.; et al. Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures. Nat. Commun. 2020, 11, 6240.
16. Wang, F.; Li, Y.; Chen, X.; et al. Superior strength–ductility combination in Al alloys via dislocation gradient structure. Mater. Res. Lett. 2023, 11, 347-53.
17. Lu, Q.; Li, K.; Chen, H.; et al. Simultaneously enhanced strength and ductility of 6xxx Al alloys via manipulating meso-scale and nano-scale structures guided with phase equilibrium. J. Mater. Sci. Technol. 2020, 41, 139-48.
18. Du, J.; Zhang, A.; Zhang, Y.; Wang, T.; Xiong, S.; Liu, F. Atomistic determination on stability, cluster and microstructures in terms of crystallographic and thermo-kinetic integration of Al−Mg−Si alloys. Mater. Today. Commun. 2020, 24, 101220.
19. Du, J.; Wen, B. Composition-structure-property correlations of complex metallic alloys described by the “cluster-plus-glue-atom” model. Appl. Mater. Today. 2017, 7, 13-46.
20. Leyson, G.; Hector, L.; Curtin, W. Solute strengthening from first principles and application to aluminum alloys. Acta. Mater. 2012, 60, 3873-84.
21. Shercliff, H.; Ashby, M. A process model for age hardening of aluminium alloys - II. Applications of the model. Acta. Metall. Mater. 1990, 38, 1803-12.
22. Sun, W.; Zhu, Y.; Marceau, R.; et al. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity. Science 2019, 363, 972-5.
23. Liu, G.; Sun, J.; Nan, C.; Chen, K. Experiment and multiscale modeling of the coupled influence of constituents and precipitates on the ductile fracture of heat-treatable aluminum alloys. Acta. Mater. 2005, 53, 3459-68.
24. Du, J.; Wen, B.; Melnik, R.; Kawazoe, Y. Cluster characteristics and physical properties of binary Al–Zr intermetallic compounds from first principles studies. Comput. Mater. Sci. 2015, 103, 170-8.
25. Du, J.; Zhang, A.; Zhang, L.; Xiong, S.; Liu, F. Quantitative and qualitative correlations by atomistic determination for the precipitated phases in Al–Li–Cu system. Intermetallics 2019, 112, 106551.
26. Bardel, D.; Perez, M.; Nelias, D.; et al. Coupled precipitation and yield strength modelling for non-isothermal treatments of a 6061 aluminium alloy. Acta. Mater. 2014, 62, 129-40.
27. Vannarat, S.; Sluiter, M. H. F.; Kawazoe, Y. First-principles study of solute-dislocation interaction in aluminum-rich alloys. Phys. Rev. B. 2001, 64, 224203.
28. Zhang, X.; Lu, S.; Zhang, B.; Tian, X.; Kan, Q.; Kang, G. Dislocation–grain boundary interaction-based discrete dislocation dynamics modeling and its application to bicrystals with different misorientations. Acta. Mater. 2021, 202, 88-98.
29. Gorbatov, O.; Stroev, A.; Gornostyrev, Y.; Korzhavyi, P. Effective cluster interactions and pre–precipitate morphology in binary Al-based alloys. Acta. Mater. 2019, 179, 70-84.
30. Bignon, M.; Ma, Z.; Robson, J. D.; Shanthraj, P. Interactions between plastic deformation and precipitation in aluminium alloys: a crystal plasticity model. Acta. Mater. 2023, 247, 118735.
31. Krasnikov, V.; Mayer, A.; Pogorelko, V.; Latypov, F.; Ebel, A. Interaction of dislocation with GP zones or θ" phase precipitates in aluminum: atomistic simulations and dislocation dynamics. Int. J. Plast. 2020, 125, 169-90.
32. Niewczas, M.; Jobba, M.; Mishra, R. Thermally activated flow of dislocations in Al–Mg binary alloys. Acta. Mater. 2015, 83, 372-82.
33. Fan, H.; Wang, Q.; El-Awady, J. A.; Raabe, D.; Zaiser, M. Strain rate dependency of dislocation plasticity. Nat. Commun. 2021, 12, 1845.
34. Chen, M.; Ma, E.; Hemker, K. J.; Sheng, H.; Wang, Y.; Cheng, X. Deformation twinning in nanocrystalline aluminum. Science 2003, 300, 1275-7.
35. Mahajan, S.; Chin, G. Formation of deformation twins in f.c.c. crystals. Acta. Metall. 1973, 21, 1353-63.
36. Du, J.; Liu, Y.; Zhang, Z.; et al. Deformation behaviors in light of dislocation core characteristics with respect to the compositional-dependent misfit potentials of aluminum alloys. J. Mater. Res. Technol. 2023, 27, 4366-77.
37. Liu, F. Nucleation/growth design by thermo-kinetic partition. J. Mater. Sci. Technol. 2023, 155, 72-81.
38. He, Y.; Song, S.; Du, J.; et al. Thermo-kinetic connectivity by integrating thermo-kinetic correlation and generalized stability. J. Mater. Sci. Technol. 2022, 127, 225-35.
39. Huang, L.; Lin, W.; Zhang, Y.; et al. Generalized stability criterion for exploiting optimized mechanical properties by a general correlation between phase transformations and plastic deformations. Acta. Mater. 2020, 201, 167-81.
40. Wang, T.; Liu, F. Multiscale thermo-kinetic characterization for β′ and β1 precipitation in Mg-Sm alloys. Acta. Mater. 2023, 254, 119011.
41. Wang, T.; Liu, F. Optimizing mechanical properties of magnesium alloys by philosophy of thermo-kinetic synergy: review and outlook. J. Magnes. Alloys. 2022, 10, 326-55.
42. Zhang, Y.; Song, S.; Liu, F. Thermo-kinetic orientation study on interface behavior of polycrystalline Cu-Nb composite by crystal plasticity finite element method. Mater. Design. 2022, 223, 111215.
43. Liu, Y.; Du, J.; Shang, S.; et al. Insights into plastic deformation mechanisms of austenitic steels by coupling generalized stacking fault energy and semi-discrete variational Peierls-Nabarro model. Prog. Nat. Sci. Mater. Int. 2023, 33, 83-91.
44. Zhang, Y.; Du, J.; Wang, K.; Wang, H.; Li, S.; Liu, F. Application of non-equilibrium dendrite growth model considering thermo-kinetic correlation in twin-roll casting. J. Mater. Sci. Technol. 2020, 44, 209-22.
45. Du, J.; Zhang, Z.; Liu, Y.; et al. Strength-ductility trade-off modulated by thermo-kinetic synergy of heat-treatable aluminum alloys. J. Mater. Res. Technol. 2023, 24, 7876-95.
46. Liu, Y.; Du, J.; Zhang, K.; et al. Orientation-dependent mechanical behaviors of BCC-Fe in light of the thermo-kinetic synergy of plastic deformation. Materials 2024, 17, 2395.
47. Chen, H.; Chen, Z.; Ji, G.; et al. Experimental and modelling assessment of ductility in a precipitation hardening AlMgScZr alloy. Int. J. Plast. 2021, 139, 102971.
48. Yang, M.; Orekhov, A.; Hu, Z.; et al. Shearing and rotation of β″ and βʹ precipitates in an Al-Mg-Si alloy under tensile deformation: in-situ and ex-situ studies. Acta. Mater. 2021, 220, 117310.
49. Kocks, U. F.; Argon, A. S.; Ashby, M. F. Thermodynamics and kinetics of slip. 1975. https://api.semanticscholar.org/CorpusID:137701656. (accessed 2025-02-11).
51. Cheng, L. M.; Poole, W. J.; Embury, J. D.; Lloyd, D. J. The influence of precipitation on the work-hardening behavior of the aluminum alloys AA6111 and AA7030. Metall. Mater. Trans. A. 2003, 34, 2473-81.
52. Myhr, O. R.; Grong, Ø.; Andersen, S. J. Modelling of the age hardening behaviour of Al–Mg–Si alloys. Acta. Mater. 2001, 49, 65-75.
54. Esmaeili, S.; Lloyd, D.; Poole, W. A yield strength model for the Al-Mg-Si-Cu alloy AA6111. Acta. Mater. 2003, 51, 2243-57.
55. Arsenlis, A.; Parks, D. M. Modeling the evolution of crystallographic dislocation density in crystal plasticity. J. Mech. Phys. Solids. 2002, 50, 1979-2009.
57. Pan, B.; Shibutani, Y.; Tanaka, H. Dislocation-based constitutive model of crystal plasticity for the size effect of single crystalline micropillar samples. Mech. Eng. J. 2016, 3, 15-00602.
58. Caillard, D.; Martin, J. L. Chapter 8 - Dislocation climb. In: Thermally activated mechanisms in crystal plasticity. Amsterdam: Elsevier. 2003;8:281-319.
59. Wang, S.; Hashimoto, N.; Wang, Y.; Ohnuki, S. Activation volume and density of mobile dislocations in hydrogen-charged iron. Acta. Mater. 2013, 61, 4734-42.
60. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1-19.
61. Jelinek, B.; Groh, S.; Horstemeyer, M. F.; et al. Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys. Phys. Rev. B. 2012, 85, 245102.
62. Hue DT, Tran V, Nguyen V, Van Lich L, Dinh V, Nguyen T. High strain-rate effect on microstructure evolution and plasticity of aluminum 5052 alloy nano-multilayer: a molecular dynamics study. Vacuum 2022, 201, 111104.
63. Zhang, L.; Shibuta, Y.; Huang, X.; Lu, C.; Liu, M. Grain boundary induced deformation mechanisms in nanocrystalline Al by molecular dynamics simulation: from interatomic potential perspective. Comput. Mater. Sci. 2019, 156, 421-33.
64. Xu, Y.; Wang, M.; Zhu, F.; et al. A molecular dynamic study of nano-grinding of a monocrystalline copper-silicon substrate. Appl. Surf. Sci. 2019, 493, 933-47.
65. Fan, H.; El-awady, J. A. Towards resolving the anonymity of pyramidal slip in magnesium. Mater. Sci. Eng. A. 2015, 644, 318-24.
66. Xing, Z.; Fan, H.; Tang, J.; Wang, B.; Kang, G. Molecular dynamics simulation on the cyclic deformation of magnesium single crystals. Comput. Mater. Sci. 2021, 186, 110003.
67. Sun, X.; Fan, S.; Peng, M.; et al. Classical molecular dynamics simulation of atomic structure transitions in FeSiCuMgAl high-entropy alloys under biaxial stretching. Mater. Today. Commun. 2024, 40, 109716.
68. Husain, A.; La, P.; Hongzheng, Y.; Jie, S. Molecular dynamics as a means to investigate grain size and strain rate effect on plastic deformation of 316 L nanocrystalline stainless-steel. Materials 2020, 13, 3223.
69. Sainath, G.; Choudhary, B. Orientation dependent deformation behaviour of BCC iron nanowires. Comput. Mater. Sci. 2016, 111, 406-15.
70. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO - the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 2010, 18, 015012.
71. Stukowski, A.; Bulatov, V. V.; Arsenlis, A. Automated identification and indexing of dislocations in crystal interfaces. Modell. Simul. Mater. Sci. Eng. 2012, 20, 085007.
72. Sendrowicz, A.; Myhre, A.; Yasnikov, I.; Vinogradov, A. Stored and dissipated energy of plastic deformation revisited from the viewpoint of dislocation kinetics modelling approach. Acta. Mater. 2022, 237, 118190.
73. Li, Z.; Zhao, P.; Jia, Z.; Liu, Z.; Xie, Z. Effects of Mg and Si contents on the microstructure and mechanical properties of AA6014 alloys in T4P and T6P temper. Mater. Sci. Eng. A. 2019, 740-1, 187-200.
74. Khangholi, S. N.; Javidani, M.; Maltais, A.; Chen, X. Effect of Ag and Cu addition on the strength and electrical conductivity of Al-Mg-Si alloys using conventional and modified thermomechanical treatments. J. Alloys. Compd. 2022, 914, 165242.
75. Zhu, L.; Guo, M.; Zhang, J. Effect of silicon content on nucleation and growth of multiscale precipitates in Al–Mg–Si–Cu–Zn alloys for different aging paths. Mater. Sci. Eng. A. 2022, 841, 143016.
76. Zepeda-Ruiz, L. A.; Stukowski, A.; Oppelstrup, T.; Bulatov, V. V. Probing the limits of metal plasticity with molecular dynamics simulations. Nature 2017, 550, 492-5.
77. Wei, Y.; Bower, A. F.; Gao, H. Enhanced strain-rate sensitivity in fcc nanocrystals due to grain-boundary diffusion and sliding. Acta. Mater. 2008, 56, 1741-52.
78. Ma, K.; Wen, H.; Hu, T.; et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta. Mater. 2014, 62, 141-55.
79. Kamikawa, N.; Huang, X.; Tsuji, N.; Hansen, N. Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed. Acta. Mater. 2009, 57, 4198-208.
80. Frigaard, Ø.; Grong, Ø.; Midling, O. T. A process model for friction stir welding of age hardening aluminum alloys. Metall. Mater. Trans. A. 2001, 32, 1189-200.
81. Starink, M.; Deschamps, A.; Wang, S. The strength of friction stir welded and friction stir processed aluminium alloys. Scr. Mater. 2008, 58, 377-82.
82. Mahata, A.; Asle, Z. M. Evolution of solidification defects in deformation of nano-polycrystalline aluminum. Comput. Mater. Sci. 2019, 163, 176-85.
83. Kadau, K.; Lomdahl, P. S.; Holian, B. L.; et al. Molecular-dynamics study of mechanical deformation in nano-crystalline aluminum. Metall. Mater. Trans. A. 2004, 35, 2719-23.
84. Hocker, S.; Hummel, M.; Binkele, P.; Lipp, H.; Schmauder, S. Molecular dynamics simulations of tensile tests of Ni-, Cu-, Mg- and Ti-alloyed aluminium nanopolycrystals. Comput. Mater. Sci. 2016, 116, 32-43.
85. Lee, B.; Kim, S.; Park, J.; Kim, H.; Lee, J. Role of Mg in simultaneously improving the strength and ductility of Al–Mg alloys. Mater. Sci. Eng. A. 2016, 657, 115-22.
86. Remøe, M. S.; Marthinsen, K.; Westermann, I.; Pedersen, K.; Røyset, J.; Marioara, C. The effect of alloying elements on the ductility of Al-Mg-Si alloys. Mater. Sci. Eng. A. 2017, 693, 60-72.
87. Matsuda, K.; Teguri, D.; Sato, T.; Uetani, Y.; Ikeno, S. Cu segregation around metastable phase in Al-Mg-Si alloy with Cu. Mater. Trans. 2007, 48, 967-74.
88. Tian, Y.; Shibata, A.; Zhang, Z.; Tsuji, N. Ductility sensitivity to stacking fault energy and grain size in Cu–Al alloys. Mater. Res. Lett. 2016, 4, 112-7.
89. Van Swygenhoven, H.; Derlet, P. M.; Frøseth, A. G. Stacking fault energies and slip in nanocrystalline metals. Nat. Mater. 2004, 3, 399-403.
90. An, X.; Wu, S.; Zhang, Z.; Figueiredo, R.; Gao, N.; Langdon, T. Enhanced strength–ductility synergy in nanostructured Cu and Cu–Al alloys processed by high-pressure torsion and subsequent annealing. Scr. Mater. 2012, 66, 227-30.
91. Vitek, V. Atomic level computer modelling of crystal defects with emphasis on dislocations: past, present and future. Prog. Mater. Sci. 2011, 56, 577-85.
92. Bajaj, D.; Chen, D. Uncovering all possible dislocation locks in face-centered cubic materials. Int. Jo. Plast. 2024, 181, 104101.
93. Su, R.; Neffati, D.; Xue, S.; et al. Deformation mechanisms in FCC Co dominated by high-density stacking faults. Mater. Sci. Eng. A. 2018, 736, 12-21.
94. Takeuchi, A.; Inoue, A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 2005, 46, 2817-29.
95. Zhang, Z.; Du, J.; Zhang, K.; Yang, X.; Song, K.; Liu, F. An aging processing design scheme derived from precipitation thermo-kinetic synergy of heat-treatable aluminum alloys. Mater. Sci. Eng. A. 2025, 919, 147505.
96. Seeger, A.; Diehl, J.; Mader, S.; Rebstock, H. Work-hardening and work-softening of face-centred cubic metal crystals. Philos. Mag. 1957, 2, 323-50.
97. Yang, C.; Pan, J.; Lee, T. Work-softening and anneal-hardening behaviors in fine-grained Zn–Al alloys. J. Alloys. Compd. 2009, 468, 230-6.