REFERENCES

1. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment inelectrocatalysis: insights into materials design. Science 2017, 355, eaad4998.

2. Ding, K.; Yang, T.; Leung, M. T.; et al. Recent advances in the data-driven development of emerging electrocatalysts. Curr. Opin. Electrochem. 2023, 42, 101404.

3. Banoth, P.; Kandula, C.; Kollu, P. Introduction to electrocatalysts. In Noble metal-free electrocatalysts: new trends in electrocatalysts for energy applications. Vol. 2; Washington: American Chemical Society, 2022; pp. 1-37.

4. Santos, D. M. F.; Šljukić, B. Advanced materials for electrochemical energy conversion and storage devices. Materials 2021, 14, 7711.

5. Chen, L.; Zhang, X.; Chen, A.; Yao, S.; Hu, X.; Zhou, Z. Targeted design of advanced electrocatalysts by machine learning. Chin. J. Catal. 2022, 43, 11-32.

6. Liao, X.; Lu, R.; Xia, L.; et al. Density functional theory for electrocatalysis. Energy. Environ. Mater. 2022, 5, 157-85.

7. Chen, Z. W.; Li, J.; Ou, P.; et al. Unusual Sabatier principle on high entropy alloy catalysts for hydrogen evolution reactions. Nat. Commun. 2024, 15, 359.

8. Peng, J.; Schwalbe-Koda, D.; Akkiraju, K.; et al. Human- and machine-centred designs of molecules and materials for sustainability and decarbonization. Nat. Rev. Mater. 2022, 7, 991-1009.

9. Yang, T.; Song, T. T.; Zhou, J.; et al. High-throughput screening of transition metal single atom catalysts anchored on molybdenum disulfide for nitrogen fixation. Nano. Energy. 2020, 68, 104304.

10. Yang, T.; Zhou, J.; Song, T. T.; Shen, L.; Feng, Y. P.; Yang, M. High-throughput identification of exfoliable two-dimensional materials with active basal planes for hydrogen evolution. ACS. Energy. Lett. 2020, 5, 2313-21.

11. Shen, L.; Zhou, J.; Yang, T.; Yang, M.; Feng, Y. P. High-throughput computational discovery and intelligent design of two-dimensional functional materials for various applications. Acc. Mater. Res. 2022, 3, 572-83.

12. Zhou, J.; Shen, L.; Yang, M.; Cheng, H.; Kong, W.; Feng, Y. P. Discovery of hidden classes of layered electrides by extensive high-throughput material screening. Chem. Mater. 2019, 31, 1860-8.

13. Steinmann, S. N.; Wang, Q.; Seh, Z. W. How machine learning can accelerate electrocatalysis discovery and optimization. Mater. Horiz. 2023, 10, 393-406.

14. Liu, C.; Senftle, T. P. Finding physical insights in catalysis with machine learning. Curr. Opin. Chem. Eng. 2022, 37, 100832.

15. Xin, H.; Mou, T.; Pillai, H. S.; Wang, S.; Huang, Y. Interpretable machine learning for catalytic materials design toward sustainability. Acc. Mater. Res. 2024, 5, 22-34.

16. Kayode, G. O.; Montemore, M. M. Latent variable machine learning framework for catalysis: general models, transfer learning, and interpretability. JACS. Au. 2024, 4, 80-91.

17. Rangarajan, S. Chapter 6 - Artificial intelligence in catalysis. In Artificial intelligence in manufacturing, Elsevier, 2024; pp. 167-204.

18. Zhang, Y.; Peck, T. C.; Reddy, G. K.; et al. Descriptor-free design of multicomponent catalysts. ACS. Catal. 2022, 12, 10562-71.

19. Jäger, M. O. J.; Ranawat, Y. S.; Canova, F. F.; Morooka, E. V.; Foster, A. S. Efficient machine-learning-aided screening of hydrogen adsorption on bimetallic nanoclusters. ACS. Comb. Sci. 2020, 22, 768-81.

20. Fan, X.; Chen, L.; Huang, D.; et al. From single metals to high-entropy alloys: how machine learning accelerates the development of metal electrocatalysts. Adv. Funct. Mater. 2024, 34, 2401887.

21. Park, Y.; Hwang, C.; Bang, K.; et al. Machine learning filters out efficient electrocatalysts in the massive ternary alloy space for fuel cells. Appl. Catal. B. Environ. 2023, 339, 123128.

22. Esterhuizen, J. A.; Goldsmith, B. R.; Linic, S. Interpretable machine learning for knowledge generation in heterogeneous catalysis. Nat. Catal. 2022, 5, 175-84.

23. Chanussot, L.; Das, A.; Goyal, S.; et al. Open Catalyst 2020 (OC20) Dataset and community challenges. ACS. Catal. 2021, 11, 6059-72.

24. Tran, R.; Lan, J.; Shuaibi, M.; et al. The Open Catalyst 2022 (OC22) Dataset and challenges for oxide electrocatalysts. ACS. Catal. 2023, 13, 3066-84.

25. Jain, A.; Ong, S. P.; Hautier, G.; et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL. Mater. 2013, 1, 011002.

26. Saal, J. E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C. Materials design and discovery with high-throughput density functional theory: the Open Quantum Materials Database (OQMD). JOM. 2013, 65, 1501-9.

27. Zhou, J.; Shen, L.; Costa, M. D.; et al. 2DMatPedia, an open computational database of two-dimensional materials from top-down and bottom-up approaches. Sci. Data. 2019, 6, 86.

28. Montavon, G.; Hansen, K.; Fazli, S.; et al. Learning invariant representations of molecules for atomization energy prediction. In Proceedings of the 26th International Conference on Neural Information Processing Systems, Curran Associates Inc.: Red Hook, USA, 2012; Vol 1, pp 440-8.

29. Rupp, M.; Tkatchenko, A.; Müller, K. R.; von, L. O. A. Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 2012, 108, 058301.

30. Bartók, A. P.; Kondor, R.; Csányi, G. On representing chemical environments. Phys. Rev. B. 2013, 87, 184115.

31. Willatt, M. J.; Musil, F.; Ceriotti, M. Feature optimization for atomistic machine learning yields a data-driven construction of the periodic table of the elements. Phys. Chem. Chem. Phys. 2018, 20, 29661-8.

32. Jäger, M. O. J.; Morooka, E. V.; Federici, C. F.; Himanen, L.; Foster, A. S. Machine learning hydrogen adsorption on nanoclusters through structural descriptors. npj. Comput. Mater. 2018, 4, 96.

33. De, S.; Bartók, A. P.; Csányi, G.; Ceriotti, M. Comparing molecules and solids across structural and alchemical space. Phys. Chem. Chem. Phys. 2016, 18, 13754-69.

34. Mai, H.; Le, T. C.; Chen, D.; Winkler, D. A.; Caruso, R. A. Machine learning for electrocatalyst and photocatalyst design and discovery. Chem. Rev. 2022, 122, 13478-515.

35. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B. 2004, 108, 17886-92.

36. Motagamwala, A. H.; Ball, M. R.; Dumesic, J. A. Microkinetic analysis and scaling relations for catalyst design. Annu. Rev. Chem. Biomol. Eng. 2018, 9, 413-50.

37. Pérez-Ramírez, J.; López, N. Strategies to break linear scaling relationships. Nat. Catal. 2019, 2, 971-6.

38. Batchelor, T. A.; Pedersen, J. K.; Winther, S. H.; Castelli, I. E.; Jacobsen, K. W.; Rossmeisl, J. High-entropy alloys as a discovery platform for electrocatalysis. Joule 2019, 3, 834-45.

39. Artyushkova, K.; Pylypenko, S.; Olson, T. S.; Fulghum, J. E.; Atanassov, P. Predictive modeling of electrocatalyst structure based on structure-to-property correlations of x-ray photoelectron spectroscopic and electrochemical measurements. Langmuir 2008, 24, 9082-8.

40. Hearst, M.; Dumais, S.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE. Intell. Syst. Their. Appl. 1998, 13, 18-28.

41. Sun, H.; Li, Y.; Gao, L.; et al. High throughput screening of single atomic catalysts with optimized local structures for the electrochemical oxygen reduction by machine learning. J. Energy. Chem. 2023, 81, 349-57.

42. Arjmandi, M.; Fattahi, M.; Motevassel, M.; Rezaveisi, H. Evaluating algorithms of decision tree, support vector machine and regression for anode side catalyst data in proton exchange membrane water electrolysis. Sci. Rep. 2023, 13, 20309.

43. Hossain, S. S.; Ali, S. S.; Rushd, S.; Ayodele, B. V.; Cheng, C. K. Interaction effect of process parameters and Pd-electrocatalyst in formic acid electro-oxidation for fuel cell applications: implementing supervised machine learning algorithms. Int. J. Energy. Res. 2022, 46, 21583-97.

44. Tamtaji, M.; Chen, S.; Hu, Z.; Goddard, I. W. A.; Chen, G. A surrogate machine learning model for the design of single-atom catalyst on carbon and porphyrin supports towards electrochemistry. J. Phys. Chem. C. 2023, 127, 9992-10000.

45. Anbari, E.; Adib, H.; Iranshahi, D. Experimental investigation and development of a SVM model for hydrogenation reaction of carbon monoxide in presence of Co–Mo/Al2O3 catalyst. Chem. Eng. J. 2015, 276, 213-21.

46. Sun, J.; Chen, A.; Guan, J.; et al. Interpretable machine learning-assisted high-throughput screening for understanding NRR electrocatalyst performance modulation between active center and C-N coordination. Energy. Environ. Mater. 2024, 7, e12693.

47. Tan, S.; Wang, R.; Song, G.; et al. Machine learning and Shapley Additive Explanation-based interpretable prediction of the electrocatalytic performance of N-doped carbon materials. Fuel 2024, 355, 129469.

48. Zhang, Y.; Wang, Y.; Ma, N.; Fan, J. Directly predicting N2 electroreduction reaction free energy using interpretable machine learning with non-DFT calculated features. J. Energy. Chem. 2024, 97, 139-48.

49. Wei, C.; Shi, D.; Yang, Z.; et al. Data-driven design of double-atom catalysts with high H2 evolution activity/CO2 reduction selectivity based on simple features. J. Mater. Chem. A. 2023, 11, 18168-78.

50. Ying, Y.; Fan, K.; Luo, X.; Qiao, J.; Huang, H. Unravelling the origin of bifunctional OER/ORR activity for single-atom catalysts supported on C2N by DFT and machine learning. J. Mater. Chem. A. 2021, 9, 16860-7.

51. Lin, S.; Xu, H.; Wang, Y.; Zeng, X. C.; Chen, Z. Directly predicting limiting potentials from easily obtainable physical properties of graphene-supported single-atom electrocatalysts by machine learning. J. Mater. Chem. A. 2020, 8, 5663-70.

52. Lu, S.; Song, P.; Jia, Z.; et al. Symbolic transform optimized convolutional neural network model for high-performance prediction and analysis of MXenes hydrogen evolution reaction catalysts. Int. J. Hydrogen. Energy. 2024, 85, 200-9.

53. Roy, D.; Charan, M. S.; Das, A.; Pathak, B. Unravelling CO2 reduction reaction intermediates on high entropy alloy catalysts: an interpretable machine learning approach to establish scaling relations. Chemistry 2024, 30, e202302679.

54. Wang, Y.; Zhang, Y.; Ma, N.; et al. Machine learning accelerated catalysts design for CO reduction: an interpretability and transferability analysis. J. Mater. Sci. Technol. 2025, 213, 14-23.

55. Jia, X.; Li, H. Machine learning enabled exploration of multicomponent metal oxides for catalyzing oxygen reduction in alkaline media. J. Mater. Chem. A. 2024, 12, 12487-500.

56. Yang, H.; Zhao, J.; Wang, Q.; et al. Convolutional neural networks and volcano plots: screening and prediction of two-dimensional single-atom catalystsar. arXiv2024, arXiv:2402.03876. Available online: https://doi.org/10.48550/arXiv.2402.03876. (accessed 15 Jan 2025)

57. Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G. E. Neural message passing for quantum chemistry. arXiv2017, arXiv:1704.01212. Available online: https://doi.org/10.48550/arXiv.1704.01212. (accessed 15 Jan 2025)

58. Xie, T.; Grossman, J. C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 2018, 120, 145301.

59. Park, Y.; Kim, J.; Hwang, S.; Han, S. Scalable parallel algorithm for graph neural network interatomic potentials in molecular dynamics simulations. J. Chem. Theory. Comput. 2024, 20, 4857-68.

60. Merchant, A.; Batzner, S.; Schoenholz, S. S.; Aykol, M.; Cheon, G.; Cubuk, E. D. Scaling deep learning for materials discovery. Nature 2023, 624, 80-5.

61. Deng, B.; Zhong, P.; Jun, K.; et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling. Nat. Mach. Intell. 2023, 5, 1031-41.

62. Chen, C.; Ong, S. P. A universal graph deep learning interatomic potential for the periodic table. Nat. Comput. Sci. 2022, 2, 718-28.

63. Tang, D.; Ketkaew, R.; Luber, S. Machine learning interatomic potentials for heterogeneous catalysis. Chemistry 2024, 30, e202401148.

64. Batatia, I.; Kovacs, D. P.; Simm, G. N. C.; Ortner, C.; Csányi, G. MACE: higher order equivariant message passing neural networks for fast and accurate force fields. arXiv2022, arXiv:2206.07697. Available online: https://doi.org/10.48550/arXiv.2206.07697 (accessed 15 Jan 2025)

65. Batatia, I.; Batzner, S.; Kovács, D. P.; et al. The design space of e (3)-equivariant atom-centered interatomic potentials. arXiv2022, arXiv:2205.06643. Available online: https://doi.org/10.48550/arXiv.2205.06643 (accessed 15 Jan 2025)

66. Riebesell, J.; Goodall, R. E. A.; Benner, P.; et al. Matbench discovery - an evaluation framework for machine learning crystal stability prediction. arXiv2023, arXiv:2308.14920. Available online: https://doi.org/10.48550/arXiv.2308.14920 (accessed 15 Jan 2025)

67. Batatia, I.; Benner, P.; Chiang, Y.; et al. A foundation model for atomistic materials chemistry. arXiv2023, arXiv:2401.00096. Available online: https://doi.org/10.48550/arXiv.2401.00096 (accessed 15 Jan 2025)

68. Open AI; Achiam J, Adler S, Agarwal S, et al. Gpt-4 technical report. arXiv2023, arXiv:2303.08774. Available online: https://doi.org/10.48550/arXiv.2303.08774 (accessed 15 Jan 2025)

69. Yao, Y.; Duan, J.; Xu, K.; Cai, Y.; Sun, Z.; Zhang, Y. A survey on large language model (LLM) security and privacy: the good, the bad, and the ugly. High. Confid. Comput. 2024, 4, 100211.

70. Chang, Y.; Wang, X.; Wang, J.; et al. A survey on evaluation of large language models. ACM. Trans. Intell. Syst. Technol. 2024, 15, 1-45.

71. Augenstein, I.; Baldwin, T.; Cha, M.; et al. Factuality challenges in the era of large language models and opportunities for fact-checking. Nat. Mach. Intell. 2024, 6, 852-63.

72. Patil, R.; Gudivada, V. A review of current trends, techniques, and challenges in large language models (LLMs). Appl. Sci. 2024, 14, 2074.

73. Beltagy, I.; Lo, K.; Cohan, A. SciBERT: a pretrained language model for scientific text. arXiv2019, arXiv:1903.10676. Available online: https://doi.org/10.48550/arXiv.1903.10676 (accessed 15 Jan 2025)

74. Wang, L.; Chen, X.; Du, Y.; Zhou, Y.; Gao, Y.; Cui, W. CataLM: empowering catalyst design through large language models. arXiv2024, arXiv:2405.17440. Available online: https://doi.org/10.48550/arXiv.2405.17440 (accessed 15 Jan 2025)

75. Ding, R.; Wang, X.; Tan, A.; Li, J.; Liu, J. Unlocking new insights for electrocatalyst design: a unique data science workflow leveraging internet-sourced big data. ACS. Catal. 2023, 13, 13267-81.

76. Minh, D.; Wang, H. X.; Li, Y. F.; Nguyen, T. N. Explainable artificial intelligence: a comprehensive review. Artif. Intell. Rev. 2022, 55, 3503-68.

77. Wang, S. H.; Pillai, H. S.; Wang, S.; Achenie, L. E. K.; Xin, H. Infusing theory into deep learning for interpretable reactivity prediction. Nat. Commun. 2021, 12, 5288.

78. Ghanekar, P. G.; Deshpande, S.; Greeley, J. Adsorbate chemical environment-based machine learning framework for heterogeneous catalysis. Nat. Commun. 2022, 13, 5788.

79. Noh, J.; Gu, G. H.; Kim, S.; Jung, Y. Uncertainty-quantified hybrid machine learning/density functional theory high throughput screening method for crystals. J. Chem. Inf. Model. 2020, 60, 1996-2003.

80. Abed, J.; Heras-Domingo, J.; Sanspeur, R. Y.; et al. Pourbaix machine learning framework identifies acidic water oxidation catalysts exhibiting suppressed ruthenium dissolution. J. Am. Chem. Soc. 2024, 146, 15740-50.

81. Zhang, J.; Wang, C.; Huang, S.; et al. Design high-entropy electrocatalyst via interpretable deep graph attention learning. Joule 2023, 7, 1832-51.

82. Deringer, V. L.; Bartók, A. P.; Bernstein, N.; Wilkins, D. M.; Ceriotti, M.; Csányi, G. Gaussian process regression for materials and molecules. Chem. Rev. 2021, 121, 10073-141.

83. Ulissi, Z. W.; Singh, A. R.; Tsai, C.; Nørskov, J. K. Automated discovery and construction of surface phase diagrams using machine learning. J. Phys. Chem. Lett. 2016, 7, 3931-5.

84. Christensen, A. S.; Bratholm, L. A.; Faber, F. A.; Anatole, L. O. FCHL revisited: faster and more accurate quantum machine learning. J. Chem. Phys. 2020, 152, 044107.

85. Xu, W.; Reuter, K.; Andersen, M. Predicting binding motifs of complex adsorbates using machine learning with a physics-inspired graph representation. Nat. Comput. Sci. 2022, 2, 443-50.

86. Togninalli, M.; Ghisu, E.; Llinares-López, F.; Rieck, B.; Borgwardt, K. Wasserstein weisfeiler-lehman graph kernels. arXiv2019, arXiv:1906.01277. Available online: https://doi.org/10.48550/arXiv.1906.01277 (accessed 15 Jan 2025)

87. Grisafi, A.; Bussy, A.; Salanne, M.; Vuilleumier, R. Predicting the charge density response in metal electrodes. Phys. Rev. Mater. 2023, 7, 125403.

88. Satorras, V. G.; Hoogeboom, E.; Welling, M. E(n) equivariant graph neural networks. arXiv2021, arXiv:2102.09844. Available online: https://doi.org/10.48550/arXiv.2102.09844 (accessed 15 Jan 2025)

89. Zhang, X.; Wang, L.; Helwig, J.; et al. Artificial intelligence for science in quantum, atomistic, and continuum systems. arXiv2023, arXiv:2307.08423. Available online: https://doi.org/10.48550/arXiv.2307.08423 (accessed 15 Jan 2025)

90. Zitnick, C. L.; Das, A.; Kolluru, A.; et al. Spherical channels for modeling atomic interactions. arXiv2022, arXiv:2206.14331. Available online: https://doi.org/10.48550/arXiv.2206.14331 (accessed 15 Jan 2025)

91. Passaro, S.; Zitnick, C. L. Reducing SO3 convolutions to SO2 for efficient equivariant GNNs. arXiv2023, arXiv:2302.03655. Available online: https://doi.org/10.48550/arXiv.2302.03655 (accessed 15 Jan 2025)

92. Liao, Y. L.; Wood, B.; Das, A.; Smidt, T. EquiformerV2: improved equivariant transformer for scaling to higher-degree representations. arXiv2023, arXiv:2306.12059. Available online: https://doi.org/10.48550/arXiv.2306.12059 (accessed 15 Jan 2025)

93. Hastie, T. J. Generalized additive models. In Statistical models in S, 1st ed.; Routledge, 2017; pp 249-307.

94. Ouyang, R.; Curtarolo, S.; Ahmetcik, E.; Scheffler, M.; Ghiringhelli, L. M. SISSO: a compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Phys. Rev. Mater. 2018, 2, 083802.

95. Lin, X.; Wang, Y.; Chang, X.; Zhen, S.; Zhao, Z.; Gong, J. High-throughput screening of electrocatalysts for nitrogen reduction reactions accelerated by interpretable intrinsic descriptor. Angew. Chem. Int. Ed. 2023, 135, e202300122.

96. Ding, Z.; Pang, Y.; Ma, A.; et al. Single-atom catalysts based on two-dimensional metalloporphyrin monolayers for electrochemical nitrate reduction to ammonia by first-principles calculations and interpretable machine learning. Int. J. Hydrogen. Energy. 2024, 80, 586-98.

97. Shu, W.; Li, J.; Liu, J. X.; et al. Structure sensitivity of metal catalysts revealed by interpretable machine learning and first-principles calculations. J. Am. Chem. Soc. 2024, 146, 8737-45.

98. Su, Y.; Wang, X.; Ye, Y.; et al. Automation and machine learning augmented by large language models in a catalysis study. Chem. Sci. 2024, 15, 12200-33.

99. Liu, X.; Peng, H. Toward next-generation heterogeneous catalysts: empowering surface reactivity prediction with machine learning. Engineering 2024, 39, 25-44.

100. Yang, Z.; Gao, W. Applications of machine learning in alloy catalysts: rational selection and future development of descriptors. Adv. Sci. 2022, 9, e2106043.

101. Ribeiro, M. T.; Singh, S.; Guestrin, C. “Why should I trust you?”: Explaining the predictions of any classifier. arXiv2016, arXiv:1602.04938. Available online: https://doi.org/10.48550/arXiv.1602.04938 (accessed 15 Jan 2025)

102. Van der Maaten L, Hinton G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579-605. https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf. (accessed 2025-01-15).

103. Lundberg, S.; Lee, S. I. A unified approach to interpreting model predictions. arXiv2017, arXiv:1705.07874. Available online: https://doi.org/10.48550/arXiv.1705.07874 (accessed 15 Jan 2025)

104. Omidvar, N.; Wang, S.; Huang, Y.; et al. Explainable AI for optimizing oxygen reduction on Pt monolayer core–shell catalysts. Electrochem. Sci. Adv. 2024, 4, e202300028.

105. Li, Y.; Zhang, X.; Li, T.; Chen, Y.; Liu, Y.; Feng, L. Accelerating materials discovery for electrocatalytic water oxidation via center-environment deep learning in spinel oxides. J. Mater. Chem. A. 2024, 12, 19362-77.

106. Roh, J.; Park, H.; Kwon, H.; et al. Interpretable machine learning framework for catalyst performance prediction and validation with dry reforming of methane. Appl. Catal. B. Environ. 2024, 343, 123454.

107. Ding, R.; Chen, Y.; Chen, P.; et al. Machine learning-guided discovery of underlying decisive factors and new mechanisms for the design of nonprecious metal electrocatalysts. ACS. Catal. 2021, 11, 9798-808.

108. Pillai, H. S.; Li, Y.; Wang, S. H.; et al. Interpretable design of Ir-free trimetallic electrocatalysts for ammonia oxidation with graph neural networks. Nat. Commun. 2023, 14, 792.

109. Zhong, M.; Tran, K.; Min, Y.; et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 2020, 581, 178-83.

110. Pablo-García, S.; Morandi, S.; Vargas-Hernández, R. A.; et al. Fast evaluation of the adsorption energy of organic molecules on metals via graph neural networks. Nat. Comput. Sci. 2023, 3, 433-42.

111. Schütt, K. T.; Unke, O. T.; Gastegger, M. Equivariant message passing for the prediction of tensorial properties and molecular spectra. arXiv2021, arXiv:2102.03150. Available online: https://doi.org/10.48550/arXiv.2102.03150 (accessed 15 Jan 2025)

112. Szymanski, N. J.; Rendy, B.; Fei, Y.; et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 2023, 624, 86-91.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/