REFERENCES

1. Lindau R, Möslang A, Rieth M, et al. Present development status of EUROFER and ODS-EUROFER for application in blanket concepts. Fusion Eng Des 2005;75-9:989-96.

2. Chun Y, Kang S, Lee D, et al. Development of Zr-containing advanced reduced-activation alloy (ARAA) as structural material for fusion reactors. Fusion Eng Des 2016;109-11:629-33.

3. Raole PM, Deshpande SP. DEMO Team. Structural materials for fusion reactors. Trans Indian Inst Met 2009;62:105-11.

4. Zinkle SJ, Busby JT. Structural materials for fission & fusion energy. Mater Today 2009;12:12-9.

5. Aubert P, Tavassoli F, Rieth M, Diegele E, Poitevin Y. Review of candidate welding processes of RAFM steels for ITER test blanket modules and DEMO. J Nucl Mater 2011;417:43-50.

6. Kano S, Yang H, Suzue R, et al. Precipitation of carbides in F82H steels and its impact on mechanical strength. Nucl Mater Energy 2016;9:331-7.

7. Mao C, Liu C, Yu L, Li H, Liu Y. Mechanical properties and tensile deformation behavior of a reduced activated ferritic-martensitic (RAFM) steel at elevated temperatures. Mater Sci Eng A 2018;725:283-9.

8. Rowcliffe A, Garrison L, Yamamoto Y, Tan L, Katoh Y. Materials challenges for the fusion nuclear science facility. Fusion Eng Des 2018;135:290-301.

9. Rowcliffe A, Kessel C, Katoh Y, et al. Materials-engineering challenges for the fusion core and lifetime components of the fusion nuclear science facility. Nucl Mater Energy 2018;16:82-7.

10. Cao H, Chen W. Effect of austenitizing temperature on microstructure and mechanical properties evaluation of microalloyed low-carbon RAFM steel. Fusion Eng Des 2023;190:113645.

11. Nagasaka T, Sakasegawa H, Tanigawa H, et al. Tensile properties of F82H steel after aging at 400-650 °C for 100,000 h. Fusion Eng Des 2015;98-9:2046-9.

12. Li Y, Nagasaka T, Muroga T, Huang Q, Wu Y. Effect of thermal ageing on tensile and creep properties of JLF-1 and CLAM steels. J Nucl Mater 2009;386-8:495-8.

13. Zhong B, Huang B, Li C, et al. Creep deformation and rupture behavior of CLAM steel at 823 K and 873 K. J Nucl Mater 2014;455:640-4.

14. Sawada K, Kushima H, Tabuchi M, Kimura K. Microstructural degradation of Gr.91 steel during creep under low stress. Mater Sci Eng A 2011;528:5511-8.

15. Mitsuhara M, Yamasaki S, Miake M, et al. Creep strengthening by lath boundaries in 9Cr ferritic heat-resistant steel. Phil Mag Lett 2016;96:76-83.

16. Xiao X, Liu G, Hu B, Wang J, Ma W. Coarsening behavior for M23C6 carbide in 12 %Cr-reduced activation ferrite/martensite steel: experimental study combined with DICTRA simulation. J Mater Sci 2013;48:5410-9.

17. Xu Y, Zhang X, Tian Y, et al. Study on the nucleation and growth of M23C6 carbides in a 10% Cr martensite ferritic steel after long-term aging. Mater Charact 2016;111:122-7.

18. Tan L, Byun T, Katoh Y, Snead L. Stability of MX-type strengthening nanoprecipitates in ferritic steels under thermal aging, stress and ion irradiation. Acta Mater 2014;71:11-9.

19. Chen J, Liu C, Wei C, Liu Y, Li H. Effects of isothermal aging on microstructure and mechanical property of low-carbon RAFM steel. Acta Metall Sin 2019;32:1151-60.

20. Xia Z, Zhang C, Yang Z. Control of precipitation behavior in reduced activation steels by intermediate heat treatment. Mater Sci Eng A 2011;528:6764-8.

21. Tan L, Snead L, Katoh Y. Development of new generation reduced activation ferritic-martensitic steels for advanced fusion reactors. J Nucl Mater 2016;478:42-9.

22. Kim T, Kim T, Cho Y, et al. Influence of Ti addition on MX precipitation and creep-fatigue properties of RAFM steel for nuclear fusion reactor. J Nucl Mater 2022;571:154001.

23. Mao C, Liu C, Yu L, Liu Y. Developing of containing Ta, Zr reduced activation ferritic/martensitic (RAFM) steel with excellent creep property. Mater Sci Eng A 2022;851:143625.

24. Jun S, Kim T, Im S, et al. Atomic scale identification of nano-sized precipitates of Ta/Ti-added RAFM steel and its superior creep strength. Mater Charact 2020;169:110596.

25. Zhou J, Shen Y, Xue W, Jia N, Misra R. Improving strength and ductility of low activation martensitic (LAM) steel by alloying with titanium and tempering. Mater Sci Eng A 2021;799:140152.

26. Klueh R. Reduced-activation steels: future development for improved creep strength. J Nucl Mater 2008;378:159-66.

27. Tan L, Katoh Y, Snead L. Development of castable nanostructured alloys as a new generation RAFM steels. J Nucl Mater 2018;511:598-604.

28. Yuan R, Liu Z, Balachandran PV, et al. Accelerated discovery of large electrostrains in BaTiO3-based piezoelectrics using active learning. Adv Mater 2018;30:1702884.

29. Wen C, Zhang Y, Wang C, et al. Machine learning assisted design of high entropy alloys with desired property. Acta Mater 2019;170:109-17.

30. Yu J, Wang C, Chen Y, Wang C, Liu X. Accelerated design of L12-strengthened Co-base superalloys based on machine learning of experimental data. Mater Design 2020;195:108996.

31. Wang C, Shen C, Cui Q, Zhang C, Xu W. Tensile property prediction by feature engineering guided machine learning in reduced activation ferritic/martensitic steels. J Nucl Mater 2020;529:151823.

32. Li X, Zheng M, Yang X, Chen P, Ding W. A property-oriented design strategy of high-strength ductile RAFM steels based on machine learning. Mater Sci Eng A 2022;840:142891.

33. Andersson J, Helander T, Höglund L, Shi P, Sundman B. Thermo-Calc & DICTRA, computational tools for materials science. Calphad 2002;26:273-312.

34. Xiong J, Shi S, Zhang T. Machine learning of phases and mechanical properties in complex concentrated alloys. J Mater Sci Technol 2021;87:133-42.

35. Bobbili R, Ramakrishna B. Prediction of phases in high entropy alloys using machine learning. Mater Today Commun 2023;36:106674.

36. Chicco D, Warrens MJ, Jurman G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput Sci 2021;7:e623.

37. Liu W, Wang C, Liang C, et al. Optimal design of γ’-strengthened high-entropy alloys via machine learning multilayer structural model. Mater Sci Eng A 2023;871:144852.

38. Gholamy A, Kreinovich V, Kosheleva O. Why 70/30 or 80/20 relation between training and testing sets: a pedagogical explanation. Int J Intell Technol Appl Stat 2018;11:105-11.

39. Rojas D, Garcia J, Prat O, et al. Effect of processing parameters on the evolution of dislocation density and sub-grain size of a 12%Cr heat resistant steel during creep at 650°C. Mater Sci Eng A 2011;528:1372-81.

40. Pešička J, Kužel R, Dronhofer A, Eggeler G. The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels. Acta Mater 2003;51:4847-62.

41. Moon J, Lee C, Lee T, Jang M, Park M, Han HN. Phase transformation and impact properties in the experimentally simulated weld heat-affected zone of a reduced activation ferritic/martensitic steel. J Nucl Mater 2014;455:81-5.

42. Yang L, Zhao F, Ding W. Laves phase evolution in china low-activation martensitic (CLAM) steel during long-term aging at 550 °C. Materials 2019;13:154.

43. Zhang X, Wu X, Liu R, Liu J, Yao M. Influence of Laves phase on creep strength of modified 9Cr-1Mo steel. Mater Sci Eng A 2017;706:279-86.

44. Jiang L, Wang C, Fu H, Shen J, Zhang Z, Xie J. Discovery of aluminum alloys with ultra-strength and high-toughness via a property-oriented design strategy. J Mater Sci Technol 2022;98:33-43.

45. Chen S, Rong L. Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel. J Nucl Mater 2015;459:13-9.

46. Kim HK, Lee JW, Moon J, Lee CH, Hong HU. Effects of Ti and Ta addition on microstructure stability and tensile properties of reduced activation ferritic/martensitic steel for nuclear fusion reactors. J Nucl Mater 2018;500:327-36.

47. Choi J, Moon J, Kim BH, et al. Tensile and Charpy impact properties of reduced activation ferritic/martensitic steel with small amounts of Ta and Ti. J Nucl Mater 2020;528:151862.

48. Zhou J, Shen Y, Hong Y, Xue W, Misra R. Strengthening a fine-grained low activation martensitic steel by nanosized carbides. Mater Sci Eng A 2020;769:138471.

49. Tan L, Yang Y, Busby J. Effects of alloying elements and thermomechanical treatment on 9Cr reduced activation ferritic–martensitic (RAFM) steels. J Nucl Mater 2013;442:S13-7.

50. Terentyev D, Puype A, Kachko O, Van Renterghem W, Henry J. Development of RAFM steel for nuclear applications with reduced manganese, silicon and carbon content. Nucl Mater Energy 2021;29:101070.

51. Huang Q. Status and improvement of CLAM for nuclear application. Nucl Fusion 2017;57:086042.

52. Kasada R, Ono H, Sakesegawa H, Hirose T, Kimura A, Kohyama A. Mechanical properties of JLF-1 reduced-activation ferritic steels. Fusion Sci Technol 2003;44:145-9.

53. Sakasegawa H, Tanigawa H. Mechanical properties of F82H plates with different thicknesses. Fusion Eng Design 2016;109-11:1724-7.

54. Mao C, Liu C, Yu L, Li H, Liu Y. The correlation among microstructural parameter and dynamic strain aging (DSA) in influencing the mechanical properties of a reduced activated ferritic-martensitic (RAFM) steel. Mater Sci Eng A 2019;739:90-8.

55. Taylor GI. The mechanism of plastic deformation of crystals. Part I. - Theoretical. Proc R Soc Lond A 1934;145:362-87.

56. Lucas G. The evolution of mechanical property change in irradiated austenitic stainless steels. J Nucl Mater 1993;206:287-305.

57. Cho KS, Park SS, Choi DH, Kwon H. Influence of Ti addition on the microstructure and mechanical properties of a 5% Cr–Mo–V steel. J Alloys Compd 2015;626:314-22.

58. Li Y, Huang Q, Wu Y, Nagasaka T, Muroga T. Mechanical properties and microstructures of China low activation martensitic steel compared with JLF-1. J Nucl Mater 2007;367-70:117-21.

59. Susila P, Sturm D, Heilmaier M, Murty B, Subramanya Sarma V. Effect of yttria particle size on the microstructure and compression creep properties of nanostructured oxide dispersion strengthened ferritic (Fe–12Cr–2W–0.5Y2O3) alloy. Mater Sci Eng A 2011;528:4579-84.

60. Ramar A, Schäublin R. Analysis of hardening limits of oxide dispersion strengthened steel. J Nucl Mater 2013;432:323-33.

61. Tavassoli A, Rensman J, Schirra M, Shiba K. Materials design data for reduced activation martensitic steel type F82H. Fusion Eng Des 2002;61-2:617-28.

62. Tan L, Busby J. Formulating the strength factor α for improved predictability of radiation hardening. J Nucl Mater 2015;465:724-30.

63. Dethloff C, Gaganidze E, Aktaa J. Quantitative TEM analysis of precipitation and grain boundary segregation in neutron irradiated EUROFER 97. J Nucl Mater 2014;454:323-31.

64. Klueh R, Alexander D, Sokolov M. Effect of rhenium and osmium on mechanical properties of a 9Cr–2W–0.25V–0.07Ta–0.1C steel. J Nucl Mater 2000;279:91-9.

65. Tong Z, Dai Y. The microstructure and tensile properties of ferritic/martensitic steels T91, Eurofer-97 and F82H irradiated up to 20dpa in STIP-III. J Nucl Mater 2010;398:43-8.

66. Tanigawa H, Shiba K, Sakasegawa H, Hirose T, Jitsukawa S. Technical issues related to the development of reduced-activation ferritic/martensitic steels as structural materials for a fusion blanket system. Fusion Eng Des 2011;86:2549-52.

67. Vivas J, De-Castro D, Altstadt E, Houska M, San-Martín D, Capdevila C. Design and high temperature behavior of novel heat resistant steels strengthened by high density of stable nanoprecipitates. Mater Sci Eng A 2020;793:139799.

68. Duan X, Zhu L, Zhang X, Huo J, Ren L. Evolution of the second phases in the weld seams of 2.25Cr-Mo-0.25 V steel in different heat treatment states. Int J Mater Res 2024;115:244-55.

69. Öhlin O, Siriki R, Chai G. Long-term creep behaviours and structural stabilities of austenitic heat-resistant stainless steels. Mater High Temp 2024;41:61-72.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/