REFERENCES
1. Kittel, C. In Kittel's Introduction to Solid State Physics, Global Edition, 8th ed.; Introduction to solid state physics; John Wiley & Sons, 2021. pp 1-24. Available from: https://www.wiley.com/en-ie/Kittel’s+Introduction+to+Solid+State+Physics%2C+Global+Edition%2C+8th+Edition-p-9781119454168 (accessed 2025-02-25).
2. Crawford, J.H.; Slifkin, L.M. Point Defects in Solids: General and Ionic Crystals; Springer US, 2013.
3. Mosquera-Lois, I.; Kavanagh, S. R.; Klarbring, J.; Tolborg, K.; Walsh, A. Imperfections are not 0 K: free energy of point defects in crystals. Chem. Soc. Rev. 2023, 52, 5812-26.
4. Walsh, A.; Zunger, A. Instilling defect tolerance in new compounds. Nat. Mater. 2017, Online ahead of print.
5. Buckeridge, J. Equilibrium point defect and charge carrier concentrations in a material determined through calculation of the self-consistent Fermi energy. Comput. Phys. Commun. 2019, 244, 329-42.
6. Zunger, A.; Malyi, O. I. Understanding doping of quantum materials. Chem. Rev. 2021, 121, 3031-60.
7. Goyal, A.; Gorai, P.; Toberer, E. S.; Stevanović, V. First-principles calculation of intrinsic defect chemistry and self-doping in PbTe. npj. Comput. Mater. 2017, 3, 47.
8. Broberg, D.; Bystrom, K.; Srivastava, S.; et al. High-throughput calculations of charged point defect properties with semi-local density functional theory - performance benchmarks for materials screening applications. npj. Comput. Mater. 2023, 9, 1015.
9. Van de Walle, C.G.; Neugebauer, J. First-principles calculations for defects and impurities: applications to III-nitrides. J. Appl. Phys. 2004, 95, 3851-79.
10. Freysoldt, C.; Grabowski, B.; Hickel, T.; et al. First-principles calculations for point defects in solids. Rev. Mod. Phys. 2014, 86, 253-305.
12. Liu, Q.; Dalpian, G. M.; Zunger, A. Antidoping in insulators and semiconductors having intermediate bands with trapped carriers. Phys. Rev. Lett. 2019, 122, 106403.
13. Zhang, S.; Wei, S.; Zunger, A. Overcoming doping bottlenecks in semiconductors and wide-gap materials. Physica. B. 1999, 273-274, 976-80.
15. Van de Walle, C.G.; Neugebauer, J. Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature 2003, 423, 626-8.
16. Yu, Y. G.; Zhang, X.; Zunger, A. Natural off-stoichiometry causes carrier doping in half-Heusler filled tetrahedral structures. Phys. Rev. B. 2017, 95, 085201.
17. Alkauskas, A.; Mccluskey, M. D.; Van de Walle, C. G. Tutorial: defects in semiconductors - combining experiment and theory. J. Appl. Phys. 2016, 119, 181101.
18. Vashist, L.; Gopidi, H. R.; Khan, M. R.; Malyi, O. I. Noble gas functional defect with unusual relaxation pattern in solids. J. Phys. Chem. Lett. 2023, 14, 9090-5.
19. Choi, J.; Na, K.; Lee, S.; Hwang, C. S. First-principles study on the formation of a vacancy in Ge under biaxial compressive strain. Thin. Solid. Films. 2010, 518, 6373-7.
20. Komsa, H.; Rantala, T. T.; Pasquarello, A. Finite-size supercell correction schemes for charged defect calculations. Phys. Rev. B. 2012, 86, 045112.
21. Freysoldt, C.; Neugebauer, J.; Van de Walle, C. G. Electrostatic interactions between charged defects in supercells. Phys. Status. Solidi. (b). 2011, 248, 1067-76.
22. Freysoldt, C.; Neugebauer, J.; Van de Walle, C. G. Fully ab initio finite-size corrections for charged-defect supercell calculations. Phys. Rev. Lett. 2009, 102, 016402.
23. Makov, G.; Payne, M. C. Periodic boundary conditions in ab initio calculations. Phys. Rev. B. Condens. Matter. 1995, 51, 4014-22.
24. Gopidi, H. R.; Vashist, L.; Malyi, O. I. Physics of band-filling correction in defect calculations of solid-state materials. RSC. Adv. 2024, 14, 17675-83.
25. Sopiha, K. V.; Malyi, O. I.; Persson, C.; Wu, P. Chemistry of oxygen ionosorption on SnO2 surfaces. ACS. Appl. Mater. Interfaces. 2021, 13, 33664-76.
26. Lany, S.; Zunger, A. Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: case studies for ZnO and GaAs. Phys. Rev. B. 2008, 78, 235104.
27. Castleton, C. W. M.; Mirbt, S. Finite-size scaling as a cure for supercell approximation errors in calculations of neutral native defects in InP. Phys. Rev. B. 2004, 70, 195202.
28. Muy, S.; Johnston, C.; Marzari, N. AiiDA-defects: an automated and fully reproducible workflow for the complete characterization of defect chemistry in functional materials. Electron. Struct. 2023, 5, 024009.
29. Goyal, A.; Gorai, P.; Peng, H.; Lany, S.; Stevanović, V. A computational framework for automation of point defect calculations. Comput. Mater. Sci. 2017, 130, 1-9.
30. Broberg, D.; Medasani, B.; Zimmermann, N. E.; et al. PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators. Comput. Phys. Commun. 2018, 226, 165-79.
31. Xiao, J.; Yang, K.; Guo, D.; et al. Realistic dimension-independent approach for charged-defect calculations in semiconductors. Phys. Rev. B. 2020, 101, 165306.
32. Chen, W.; Pasquarello, A. First-principles determination of defect energy levels through hybrid density functionals and GW. J. Phys. Condens. Matter. 2015, 27, 133202.
34. Thiering, G.; Gali, A. Ab Initio magneto-optical spectrum of group-IV vacancy color centers in diamond. Phys. Rev. X. 2018, 8, 021063.
35. Li, S.; Chou, J.; Hu, A.; et al. Giant shift upon strain on the fluorescence spectrum of VNNB color centers in h-BN. npj. Quantum. Inf. 2020, 6, 312.
36. Abdi, M.; Chou, J.; Gali, A.; Plenio, M. B. Color centers in hexagonal boron nitride monolayers: a group theory and Ab initio analysis. ACS. Photonics. 2018, 5, 1967-76.
37. Alkauskas, A.; Broqvist, P.; Pasquarello, A. Defect energy levels in density functional calculations: alignment and band gap problem. Phys. Rev. Lett. 2008, 101, 046405.
38. Malyi, O. I.; Yeung, M. T.; Poeppelmeier, K. R.; Persson, C.; Zunger, A. Spontaneous non-stoichiometry and ordering in degenerate but gapped transparent conductors. Matter 2019, 1, 280-94.
39. Xu, X.; Randorn, C.; Efstathiou, P.; Irvine, J. T. A red metallic oxide photocatalyst. Nat. Mater. 2012, 11, 595-8.
40. Cheikh, D.; Hogan, B. E.; Vo, T.; et al. Praseodymium telluride: a high-temperature, high-ZT thermoelectric material. Joule 2018, 2, 698-709.
41. Dismukes, J. P.; White, J. G. The preparation, properties, and crystal structures of some scandium sulfides in the range Sc2S3-ScS. Inorg. Chem. 1964, 3, 1220-8.
42. Male, J. P.; Hogan, B.; Wood, M.; Cheikh, D.; Snyder, G. J.; Bux, S. K. Using vacancies to tune mechanical and elastic properties in La3−xTe4, Nd3−xTe4, and Pr3−xTe4 rare earth telluride thermoelectric materials. Mater. Today. Phys. 2023, 32, 101016.
43. Wickramaratne, D.; Dreyer, C. E.; Monserrat, B.; et al. Defect identification based on first-principles calculations for deep level transient spectroscopy. Appl. Phys. Lett. 2018, 113, 192106.
44. Castelletto, S.; Johnson, B. C.; Ivády, V.; et al. A silicon carbide room-temperature single-photon source. Nat. Mater. 2014, 13, 151-6.
45. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. Condens. Matter. 1993, 47, 558-61.
46. Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B. Condens. Matter. 1994, 49, 14251-69.
47. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
48. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. Condens. Matter. 1996, 54, 11169-86.
49. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-8.
50. Ong, S. P.; Richards, W. D.; Jain, A.; et al. Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 2013, 68, 314-9.
51. Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 2011, 44, 1272-6.
53. Hull, A. W.; Davey, W. P. Graphical determination of hexagonal and tetragonal crystal structures from X-ray data. Phys. Rev. 1921, 17, 549-70.
54. Hannerz, H.; Svensson, G.; Istomin, S.; D'yachenko, O. Transmission electron microscopy and neutron powder diffraction studies of GdFeO3 type SrNbO3. J. Solid. State. Chem. 1999, 147, 421-8.
55. Matsuishi, S.; Nomura, T.; Hirano, M.; Kodama, K.; Shamoto, S.; Hosono, H. Direct synthesis of powdery inorganic electride
56. Schneider, S. B.; Frankovsky, R.; Schnick, W. Synthesis of alkaline earth diazenides MAEN2 (MAE = Ca, Sr, Ba) by controlled thermal decomposition of azides under high pressure. Inorg. Chem. 2012, 51, 2366-73.
57. Odaka HO, Yuzo Shigesato YS, Takashi Murakami TM, Shuichi Iwata SI. Electronic structure analyses of Sn-doped In2O3. Jpn. J. Appl. Phys. 2001, 40, 3231.
58. Setyawan, W.; Curtarolo, S. High-throughput electronic band structure calculations: challenges and tools. Comput. Mater. Sci. 2010, 49, 299-312.
59. Chan, M. K.; Ceder, G. Efficient band gap prediction for solids. Phys. Rev. Lett. 2010, 105, 196403.
60. He, J.; Baldassarri, B.; Wolverton, C. Assessment of exchange-correlation functionals on oxygen vacancy formation energies of metal oxides. Phys. Rev. B. 2023, 108, 104103.
61. Nazarov, R.; Hickel, T.; Neugebauer, J. Vacancy formation energies in fcc metals: influence of exchange-correlation functionals and correction schemes. Phys. Rev. B. 2012, 85, 144118.
62. Jain, A.; Ong, S. P.; Hautier, G.; et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL. Materials. 2013, 1, 011002.
63. Zhang, X.; Zhang, L.; Perkins, J. D.; Zunger, A. Intrinsic transparent conductors without doping. Phys. Rev. Lett. 2015, 115, 176602.
64. Ricci, F.; Dunn, A.; Jain, A.; Rignanese, G.; Hautier, G. Gapped metals as thermoelectric materials revealed by high-throughput screening. J. Mater. Chem. A. 2020, 8, 17579-94.
65. Burton, L. A.; Ricci, F.; Chen, W.; Rignanese, G.; Hautier, G. High-throughput identification of electrides from all known inorganic materials. Chem. Mater. 2018, 30, 7521-6.
66. Kim, S. W.; Shimoyama, T.; Hosono, H. Solvated electrons in high-temperature melts and glasses of the room-temperature stable electride [Ca24Al28O64]4+·4e-. Science 2011, 333, 71-4.
67. Matsuishi, S.; Toda, Y.; Miyakawa, M.; et al. High-density electron anions in a nanoporous single crystal: [Ca24Al28O64]4+(4e-). Science 2003, 301, 626-9.
68. Hosono, H.; Kitano, M. Advances in materials and applications of inorganic electrides. Chem. Rev. 2021, 121, 3121-85.
69. Li, G.; Aydemir, U.; Wood, M.; et al. Mechanical properties of thermoelectric lanthanum telluride from quantum mechanics. J. Phys. D:. Appl. Phys. 2017, 50, 274002.
70. Hu, X.; Wu, Z.; Li, Z.; et al. High-throughput search for lossless metals. Phys. Rev. Mater. 2022, 6, 065203.
71. Khan, M. R.; Gopidi, H. R.; Malyi, O. I. Optical properties and electronic structures of intrinsic gapped metals: inverse materials design principles for transparent conductors. Appl. Phys. Lett. 2023, 123, 061101.
72. Zhang, L.; Zhou, Y.; Guo, L.; et al. Correlated metals as transparent conductors. Nat. Mater. 2016, 15, 204-10.
73. Walsh, A.; Sokol, A. A.; Buckeridge, J.; Scanlon, D. O.; Catlow, C. R. A. Oxidation states and ionicity. Nat. Mater. 2018, 17, 958-64.
74. Walsh, A.; Sokol, A. A.; Buckeridge, J.; Scanlon, D. O.; Catlow, C. R. A. Electron counting in solids: oxidation states, partial charges, and ionicity. J. Phys. Chem. Lett. 2017, 8, 2074-5.
75. Malyi, O. I.; Dalpian, G. M.; Zhao, X. G.; Wang, Z.; Zunger, A. Realization of predicted exotic materials: the burden of proof. Mater. Today. 2020, 32, 35-45.
76. Malyi, O. I.; Zunger, A. False metals, real insulators, and degenerate gapped metals. Appl. Phys. Rev. 2020, 7, 041310.
77. Khan, M. R.; Gopidi, H. R.; Wlazło, M.; Malyi, O. I. Fermi-level instability as a way to tailor the properties of La3Te4. J. Phys. Chem. Lett. 2023, 14, 1962-7.
78. Hart, G. L.; Zunger, A. Origins of nonstoichiometry and vacancy ordering in Sc1-x□xS. Phys. Rev. Lett. 2001, 87, 275508.