REFERENCES

1. Li S, Yue X, Li Q, et al. Development and applications of aluminum alloys for aerospace industry. J Mater Res Technol 2023;27:944-83.

2. Starke E, Staley J. Application of modern aluminum alloys to aircraft. Prog Aerosp Sci 1996;32:131-72.

3. Ni R, Boehlert CJ, Zeng Y, et al. Automated analysis framework of strain partitioning and deformation mechanisms via multimodal fusion and computer vision. Int J Plasticity 2024;182:104119.

4. Yang H, Tian S, Gao T, et al. High-temperature mechanical properties of 2024 Al matrix nanocomposite reinforced by TiC network architecture. Mat Sci Eng A 2019;763:138121.

5. Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys. Mater Design 2014;56:862-71.

6. Dang B, Zhang X, Chen YZ, Chen CX, Wang HT, Liu F. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy. Sci Rep 2016;6:30874.

7. Kim DW, Lee S, Sohn SS. Overcoming strength-ductility trade-off via subzero martensitic transformation in medium-Mn lightweight steel. Scripta Mater 2022;210:114477.

8. Li Y, Wang Y, Lu B, et al. Effect of Cu content and Zn/Mg ratio on microstructure and mechanical properties of Al–Zn–Mg–Cu alloys. J Mater Res Technol 2022;19:3451-60.

9. Zhang Z, Li Y, Li H, Zhang D, Zhang J. Effect of high Cu concentration on the mechanical property and precipitation behavior of Al–Mg–Zn-(Cu) crossover alloys. J Mater Res Technol 2022;20:4585-96.

10. Tan P, Qin J, Quan X, Yi D, Wang B. Co-strengthening of the multi-phase precipitation in high-strength and toughness cast Al–Cu–Zn–Mg alloy via changing Zn/Mg ratios. Mat Sci Eng A 2023;873:145024.

11. Liu C, Teng G, Ma Z, Wei L, Zhang B, Chen Y. Effects of Sc and Zr microalloying on the microstructure and mechanical properties of high Cu content 7xxx Al alloy. Int J Miner Metall Mater 2019;26:1559-69.

12. Li W, Pan Q, Zou L, Liang W, He Y, Liu J. Effects of minor Sc on the microstructure and mechanical properties of Al-Zn-Mg-Cu-Zr based alloys. Rare Metals 2009;28:102-6.

13. Wang Y, Cao L, Wu X, Lin X, Yao T, Peng L. Multi-alloying effect of Ti, Mn, Cr, Zr, Er on the cast Al-Zn-Mg-Cu alloys. Mater Charact 2023;201:112984.

14. Wang Y, Wu R, Turakhodjaev N, Liu M. Microstructural evolution, precipitation behavior and mechanical properties of a novel Al–Zn–Mg–Cu–Li–Sc–Zr alloy. J Mater Res 2021;36:740-50.

15. Li C, Zhou Q, Han M, Sha S, Luo Y, Xu X. Effect of rare earth element Er on the microstructure and properties of highly alloyed Al-Zn-Mg-Cu-Zr-Ti alloy. J Alloys Compd 2023;956:170248.

16. Wu Y, Li C, Froes FH, Alvarez A. Microalloying of Sc, Ni, and Ce in an advanced Al-Zn-Mg-Cu alloy. Metall Mater Trans A 1999;30:1017-24.

17. Li J, Zhang Y, Li M, Hu Y, Zeng Q, Zhang P. Effect of combined addition of Zr, Ti and Y on microstructure and tensile properties of an Al-Zn-Mg-Cu alloy. Mater Design 2022;223:111129.

18. Chen Z, Mo Y, Nie Z. Effect of Zn content on the microstructure and properties of super-high strength Al-Zn-Mg-Cu alloys. Metall Mater Trans A 2013;44:3910-20.

19. Huang R, Li M, Yang H, et al. Effects of Mg contents on microstructures and second phases of as-cast Al–Zn–Mg–Cu alloys. J Mater Res Technol 2022;21:2105-17.

20. Berg LK, Gjønnes J, Hansen V, et al. GP-zones in Al–Zn–Mg alloys and their role in artificial aging. Acta Mater 2001;49:3443-51.

21. Yang X, Chen J, Liu J, Qin F, Xie J, Wu C. A high-strength AlZnMg alloy hardened by the T-phase precipitates. J Alloys Compd 2014;610:69-73.

22. Cheng LM, Poole WJ, Embury JD, Lloyd DJ. The influence of precipitation on the work-hardening behavior of the aluminum alloys AA6111 and AA7030. Metall Mater Trans A 2003;34:2473-81.

23. Yin H, Wen K, Li Z, et al. Effect of Zn/Mg ratio on the microstructure and mechanical properties of as-cast Al–Zn–Mg–Cu alloys and the phase transformation during homogenization. J Mater Res Technol 2023;26:3646-60.

24. Dong P, Chen S, Chen K. Effects of Cu content on microstructure and properties of super-high-strength Al-9.3Zn-2.4Mg-xCu-Zr alloy. J Alloys Compd 2019;788:329-37.

25. Fu H, Zhang H, Wang C, Yong W, Xie J. Recent progress in the machine learning-assisted rational design of alloys. Int J Miner Metall Mater 2022;29:635-44.

26. Xie J, Su Y, Zhang D, Feng Q. A vision of materials genome engineering in China. Engineering 2022;10:10-2.

27. Chen Y, Wang S, Xiong J, et al. Identifying facile material descriptors for Charpy impact toughness in low-alloy steel via machine learning. J Mater Sci Technol 2023;132:213-22.

28. Li J, Zhang Y, Cao X, et al. Accelerated discovery of high-strength aluminum alloys by machine learning. Commun Mater 2020;1:74.

29. Ghorbani M, Boley M, Nakashima P, Birbilis N. A machine learning approach for accelerated design of magnesium alloys. Part A: alloy data and property space. J Magnes Alloy 2023;11:3620-33.

30. Chaudry U, Hamad K, Abuhmed T. Machine learning-aided design of aluminum alloys with high performance. Mater Today Commun 2021;26:101897.

31. Wang C, Fu H, Jiang L, Xue D, Xie J. A property-oriented design strategy for high performance copper alloys via machine learning. npj Comput Mater 2019;5:227.

32. Chen Y, Tian Y, Zhou Y, et al. Machine learning assisted multi-objective optimization for materials processing parameters: a case study in Mg alloy. J Alloys Compd 2020;844:156159.

33. Mi X, Tian L, Tang A, et al. A reverse design model for high-performance and low-cost magnesium alloys by machine learning. Comp Mater Sci 2022;201:110881.

34. Jiang L, Wang C, Fu H, Shen J, Zhang Z, Xie J. Discovery of aluminum alloys with ultra-strength and high-toughness via a property-oriented design strategy. J Mater Sci Technol 2022;98:33-43.

35. Jiang Y, Li Y, Liu F. Microalloying-modulated strength-ductility trade-offs in as-cast Al–Mg–Si–Cu alloys. Mat Sci Eng A 2022;855:143897.

36. Marlaud T, Deschamps A, Bley F, Lefebvre W, Baroux B. Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al–Zn–Mg–Cu alloy. Acta Mater 2010;58:4814-26.

37. Liddicoat PV, Liao XZ, Zhao Y, et al. Nanostructural hierarchy increases the strength of aluminium alloys. Nat Commun 2010;1:63.

38. Sui Y, Wang Q, Wang G, Liu T. Effects of Sr content on the microstructure and mechanical properties of cast Al–12Si–4Cu–2Ni–0.8Mg alloys. J Alloys Compd 2015;622:572-9.

39. Qu Z, Zhang Z, Yan J, et al. Examining the effect of the aging state on strength and plasticity of wrought aluminum alloys. J Mater Sci Technol 2022;122:54-67.

40. Xiang H, Xu C, Zhan T, Guo P, Li L. Fabrication of high strength-ductility aluminum alloy heterogeneous plates using additive manufacturing and hot rolling process. J Mater Process Tech 2024;329:118451.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/