REFERENCES

1. Zheng Y, Yao Y, Ou J, et al. A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem Soc Rev 2020;49:8790-839.

2. Jiang Z, Li J, Yang Y, et al. Machine-learning-revealed statistics of the particle-carbon/binder detachment in lithium-ion battery cathodes. Nat Commun 2020;11:2310.

3. Wang C, Aoyagi K, Aykol M, Mueller T. Ionic conduction through reaction products at the electrolyte-electrode interface in all-solid-state Li+ batteries. ACS Appl Mater Interfaces 2020;12:55510-9.

4. Gao YC, Yao N, Chen X, Yu L, Zhang R, Zhang Q. Data-driven insight into the reductive stability of ion-solvent complexes in lithium battery electrolytes. J Am Chem Soc 2023;145:23764-70.

5. Chen X, Liu X, Shen X, Zhang Q. Applying machine learning to rechargeable batteries: from the microscale to the macroscale. Angew Chem Int Ed Engl 2021;60:24354-66.

6. Lombardo T, Duquesnoy M, El-Bouysidy H, et al. Artificial intelligence applied to battery research: hype or reality? Chem Rev 2022;122:10899-969.

7. Chen C, Zuo Y, Ye W, Li X, Deng Z, Ong SP. A critical review of machine learning of energy materials. Adv Energy Mater 2020;10:1903242.

8. Li S, Liu Y, Chen D, Jiang Y, Nie Z, Pan F. Encoding the atomic structure for machine learning in materials science. WIREs Comput Mol Sci 2022;12:e1558.

9. Wang S, Ji Y, Liu J, et al. Integrating crystal structure and numerical data for predictive models of lithium-ion battery materials: a modified crystal graph convolutional neural networks approach. J Energy Storage 2024;80:110220.

10. Zhang Z, Wang Y, Li S, Li S, Chen M. Interpretable machine learning prediction of voltage and specific capacity for electrode materials. Adv Theor Simul 2024;7:2400227.

11. Min K, Choi B, Park K, Cho E. Machine learning assisted optimization of electrochemical properties for Ni-rich cathode materials. Sci Rep 2018;8:15778.

12. Saal JE, Kirklin S, Aykol M, Meredig B, Wolverton C. Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM 2013;65:1501-9.

13. Han T, Li J, Liu L, Li F, Wang L. Accuracy evaluation of different machine learning force field features. New J Phys 2023;25:093007.

14. Batatia I, Benner P, Chiang Y, et al. A foundation model for atomistic materials chemistry. arXiv. [Preprint.] Mar 1, 2024 [accessed on 2024 Oct 21]. Available from: https://doi.org/10.48550/arXiv.2401.00096.

15. Schütt KT, Sauceda HE, Kindermans PJ, Tkatchenko A, Müller KR. SchNet - a deep learning architecture for molecules and materials. J Chem Phys 2018;148:241722.

16. Xie T, Fu X, Ganea OE, Barzilay R, Jaakkola T. Crystal diffusion variational autoencoder for periodic material generation. arXiv. [Preprint.] Mar 14, 2022 [accessed on 2024 Oct 21]. Available from: https://doi.org/10.48550/arXiv.2110.06197.

17. Cao Z, Luo X, Lv J, Wang L. Space group informed transformer for crystalline materials generation. arXiv. [Preprint.] Aug 16, 2024 [accessed on 2024 Oct 21]. Available from: https://doi.org/10.48550/arXiv.2403.15734.

18. Gebauer NWA, Gastegger M, Schütt KT. Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules. arXiv. [Preprint.] Jan 9, 2020 [accessed on 2024 Oct 21]. Available from: https://doi.org/10.48550/arXiv.1906.00957.

19. Ward L, Agrawal A, Choudhary A, Wolverton C. A general-purpose machine learning framework for predicting properties of inorganic materials. npj Comput Mater 2016;2:BFnpjcompumats201628.

20. Ong SP, Richards WD, Jain A, et al. Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comput Mater Sci 2013;68:314-9.

21. Ward L, Dunn A, Faghaninia A, et al. Matminer: an open source toolkit for materials data mining. Comput Mater Sci 2018;152:60-9.

22. Himanen L, Jäger MO, Morooka EV, et al. DScribe: library of descriptors for machine learning in materials science. Comput Phys Commun 2020;247:106949.

23. Laakso J, Himanen L, Homm H, et al. Updates to the DScribe library: new descriptors and derivatives. J Chem Phys 2023;158:234802.

24. Deml AM, O’Hayre R, Wolverton C, Stevanović V. Predicting density functional theory total energies and enthalpies of formation of metal-nonmetal compounds by linear regression. Phys Rev B 2016;93:085142.

25. Jha D, Ward L, Paul A, et al. ElemNet: deep learning the chemistry of materials from only elemental composition. Sci Rep 2018;8:17593.

26. Leung K, Qi Y, Zavadil KR, et al. Using atomic layer deposition to hinder solvent decomposition in lithium ion batteries: first-principles modeling and experimental studies. J Am Chem Soc 2011;133:14741-54.

27. Yang S, Hu S, Zhao J, et al. Prediction on discharging properties of nickel–manganese materials for high-performance sodium-ion batteries via machine learning methods. Energy Technol 2022;10:2200733.

28. Chen W, Schmidt JN, Yan D, Vohra YK, Chen C. Machine learning and evolutionary prediction of superhard B-C-N compounds. npj Comput Mater 2021;7:585.

29. Guo J, Che Y, Pedersen K, Stroe D. Battery impedance spectrum prediction from partial charging voltage curve by machine learning. J Energy Chem 2023;79:211-21.

30. Bartók AP, Kondor R, Csányi G. On representing chemical environments. Phys Rev B 2013;87:184115.

31. Huo H, Rupp M. Unified representation of molecules and crystals for machine learning. Mach Learn Sci Technol 2022;3:045017.

32. Novikov IS, Gubaev K, Podryabinkin EV, Shapeev AV. The MLIP package: moment tensor potentials with MPI and active learning. Mach Learn Sci Technol 2021;2:025002.

33. Shapeev AV. Moment tensor potentials: a class of systematically improvable interatomic potentials. Multiscale Model Sim 2016;14:1153-73.

34. Drautz R. Atomic cluster expansion for accurate and transferable interatomic potentials. Phys Rev B 2019;99:014104.

35. Bai X, Zhao X, Zhang Y, et al. Dynamic stability of copper single-atom catalysts under working conditions. J Am Chem Soc 2022;144:17140-8.

36. Chen C, Ong SP. A universal graph deep learning interatomic potential for the periodic table. Nat Comput Sci 2022;2:718-28.

37. Chen C, Ye W, Zuo Y, Zheng C, Ong SP. Graph networks as a universal machine learning framework for molecules and crystals. Chem Mater 2019;31:3564-72.

38. Cheng J, Zhang C, Dong L. A geometric-information-enhanced crystal graph network for predicting properties of materials. Commun Mater 2021;2:194.

39. Gong S, Yan K, Xie T, et al. Examining graph neural networks for crystal structures: Limitations and opportunities for capturing periodicity. Sci Adv 2023;9:eadi3245.

40. Merchant A, Batzner S, Schoenholz SS, Aykol M, Cheon G, Cubuk ED. Scaling deep learning for materials discovery. Nature 2023;624:80-5.

41. Du H, Hui J, Zhang L, Wang H. Rational design of deep learning networks based on a fusion strategy for improved material property predictions. J Chem Theory Comput 2024;20:6756-71.

42. Cheng D, Sha W, Han Q, et al. ACGNet: an interpretable attention crystal graph neural network for accurate oxidation potential prediction. Electrochim Acta 2024;473:143459.

43. Xie T, Grossman JC. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys Rev Lett 2018;120:145301.

44. Louis SY, Zhao Y, Nasiri A, et al. Graph convolutional neural networks with global attention for improved materials property prediction. Phys Chem Chem Phys 2020;22:18141-8.

45. Satorras VG, Hoogeboom E, Welling M. E(n) equivariant graph neural networks. arXiv. [Preprint.] Feb 16, 2022 [accessed on 2024 Oct 21]. Available from: https://doi.org/10.48550/arXiv.2102.09844.

46. Zhang D, Bi H, Dai FZ, Jiang W, Zhang L, Wang H. DPA-1: pretraining of attention-based deep potential model for molecular simulation. arXiv. [Preprint.] Sep 15, 2023 [accessed on 2024 Oct 21]. Available from: https://doi.org/10.48550/arXiv.2208.08236.

47. Zhang D, Liu X, Zhang X, et al. DPA-2: towards a universal large atomic model for molecular and material simulation. arXiv. [Preprint.] Dec 24, 2023 [accessed on 2024 Oct 21]. Available from: https://arxiv.org/html/2312.15492v1.

48. Chen C, Zuo Y, Ye W, Li X, Ong SP. Learning properties of ordered and disordered materials from multi-fidelity data. Nat Comput Sci 2021;1:46-53.

49. Chen C, Ong SP. AtomSets as a hierarchical transfer learning framework for small and large materials datasets. npj Comput Mater 2021;7:639.

50. Li Y, Wu Y, Han Y, et al. Local environment interaction-based machine learning framework for predicting molecular adsorption energy. J Mater Inf 2024;4:4.

51. Zhao X, Liu Y. Origin of selective production of hydrogen peroxide by electrochemical oxygen reduction. J Am Chem Soc 2021:9423-8.

52. Cao Z, Magar R, Wang Y, Barati Farimani A. MOFormer: self-supervised transformer model for metal-organic framework property prediction. J Am Chem Soc 2023;145:2958-67.

53. Jain A, Ong SP, Hautier G, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater 2013;1:011002.

54. The Materials Project. Available from: https://www.Materialsproject.Org/. [Last accessed on 21 Oct 2024].

55. Kirklin S, Saal JE, Meredig B, et al. The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies. npj Comput Mater 2015;1:BFnpjcompumats201510.

56. Kim M, Kang S, Gyu Park H, Park K, Min K. Maximizing the energy density and stability of Ni-rich layered cathode materials with multivalent dopants via machine learning. Chem Eng J 2023;452:139254.

57. Lundberg S, Lee SI. A unified approach to interpreting model predictions. arXiv. [Preprint.] Nov 25, 2017 [accessed on 2024 Oct 22]. Available from: https://doi.org/10.48550/arXiv.1705.07874.

58. Chen H, Covert IC, Lundberg SM, Lee S. Algorithms to estimate Shapley value feature attributions. Nat Mach Intell 2023;5:590-601.

59. Hu Y, Zhang Y, Wen B, Dai F. Grain boundary engineering in Nickel-rich cathode: a combination of high-throughput first-principles and interpretable machine learning study. Acta Mater 2024;276:120144.

60. Jia Y, Zhang R, Fang C, Zheng J. Interpretable machine learning to accelerate the analysis of doping effect on Li/Ni exchange in Ni-rich layered oxide cathodes. J Phys Chem Lett 2024;15:1765-73.

61. Dunn A, Wang Q, Ganose A, Dopp D, Jain A. Benchmarking materials property prediction methods: the Matbench test set and Automatminer reference algorithm. npj Comput Mater 2020;6:138.

62. MatBench. Available from: https://matbench.materialsproject.org/. [Last accessed on 22 Oct 2024].

63. Behler J. Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J Chem Phys 2011;134:074106.

64. Valle M, Oganov AR. Crystal fingerprint space - a novel paradigm for studying crystal-structure sets. Acta Crystallogr A 2010;66:507-17.

65. Kim S, Noh J, Jin T, Lee J, Jung Y. A structure translation model for crystal compounds. npj Comput Mater 2023;9:1094.

66. Isayev O, Oses C, Toher C, Gossett E, Curtarolo S, Tropsha A. Universal fragment descriptors for predicting properties of inorganic crystals. Nat Commun 2017;8:15679.

67. Dinic F, Voznyy O. Unconstrained machine learning screening for new Li-ion cathode materials enhanced by class balancing. Adv Theory Simul 2023;6:2300081.

68. Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE. Neural message passing for Quantum chemistry. In. Proceedings of the 34th International Conference on Machine Learning; Sydney, Australia. 2017. pp. 1263-72. Available from: https://proceedings.mlr.press/v70/gilmer17a. [Last accessed on 22 Oct 2024]

69. Jørgensen PB, Jacobsen KW, Schmidt MN. Neural message passing with edge updates for predicting properties of molecules and materials. arXiv. [Preprint.] Jun 8, 2018 [accessed on 2024 Oct 22]. Available from: https://doi.org/10.48550/arXiv.1806.03146.

70. He X, Wu J, Zhu Z, et al. Chemical and structural evolutions of Li–Mn-rich layered electrodes at different current densities. Energy Environ Sci 2022;15:4137-47.

71. Choudhary K, Decost B. Atomistic line graph neural network for improved materials property predictions. npj Comput Mater 2021;7:650.

72. Wang H, Zhang L, Han J, E W. DeePMD-kit: a deep learning package for many-body potential energy representation and molecular dynamics. Comput Phys Commun 2018;228:178-84.

73. Zeng J, Zhang D, Lu D, et al. DeePMD-kit v2: a software package for deep potential models. J Chem Phys 2023;159:054801.

74. Jia W, Wang H, Chen M, Lu D, Lin L, Car R. Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with machine learning. In. SC20: International Conference for High Performance Computing, Networking, Storage and Analysis; 2020 Noc 09-19; Atlanta, USA. IEEE; 2020. pp. 1-14.

75. Deng B, Zhong P, Jun K, et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling. Nat Mach Intell 2023;5:1031-41.

76. Batatia I, Péter Kovács D, Simm GNC, Ortner C, Csányi G. MACE: higher order equivariant message passing neural networks for fast and accurate force fields. arXiv. [Preprint.] Jan 26, 2023 [accessed on 2024 Oct 22]. Available from: https://doi.org/10.48550/arXiv.2206.07697.

77. Genreith-Schriever AR, Alexiu A, Phillips GS, et al. Jahn-Teller distortions and phase transitions in LiNiO2: insights from ab initio molecular dynamics and variable-temperature X-ray diffraction. Chem Mater 2024;36:2289-303.

78. Chen L, Zhang W, Nie Z, Li S, Pan F. Generative models for inverse design of inorganic solid materials. J Mater Inf 2021;1:4.

79. Ren Z, Tian SIP, Noh J, et al. An invertible crystallographic representation for general inverse design of inorganic crystals with targeted properties. Matter 2022;5:314-35.

80. Zeni C, Pinsler R, Zügner D, et al. MatterGen: a generative model for inorganic materials design. arXiv. [Preprint.] Jan 29, 2024 [accessed on 2024 Oct 22]. Available from: https://doi.org/10.48550/arXiv.2312.03687.

81. Myung S, Maglia F, Park K, et al. Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Lett 2017;2:196-223.

82. MacNeil DD, Lu Z, Chen Z, Dahn JR. A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes. J Power Sources 2002;108:8-14.

83. Zhang J, Cao T, Lei Y, et al. Nickel-rich layered cathode LiNi0.8Co0.1Mn0.1O2 mediated by a selective lattice doping towards high-performance lithium ion battery. J Alloys Compd 2023;957:170400.

84. Pechen LS, Makhonina EV, Medvedeva AE, et al. Effect of dopants on the functional properties of lithium-rich cathode materials for lithium-ion batteries. Russ J Inorg Chem 2021;66:777-88.

85. Shen Y, Yao X, Zhang J, et al. Sodium doping derived electromagnetic center of lithium layered oxide cathode materials with enhanced lithium storage. Nano Energy 2022;94:106900.

86. Thackeray M, David W, Bruce P, Goodenough J. Lithium insertion into manganese spinels. Mater Res Bull 1983;18:461-72.

87. Thackeray M, Johnson P, de Picciotto L, Bruce P, Goodenough J. Electrochemical extraction of lithium from LiMn2O4. Mater Res Bull 1984;19:179-87.

88. Vanaphuti P, Bong S, Ma L, Ehrlich S, Wang Y. Systematic study of different anion doping on the electrochemical performance of cobalt-free lithium–manganese-rich layered cathode. ACS Appl Energy Mater 2020;3:4852-9.

89. Wang Y, Liu J, Chen T, Lin W, Zheng J. Factors that affect volume change during electrochemical cycling in cathode materials for lithium ion batteries. Phys Chem Chem Phys 2022;24:2167-75.

90. Wang YY, Song X, Liu S, Li GR, Ye SH, Gao XP. Elucidating the effect of the dopant ionic radius on the structure and electrochemical performance of Ni-rich layered oxides for lithium-ion batteries. ACS Appl Mater Interfaces 2021;13:56233-41.

91. Yang W, Zhang H. Anion doping of LiNi0.4Co0.2Mn0.4O2 cathode material for lithium-ion batteries. Rare Metal Mat Eng 2014;43:3133-7. Available from: http://www.rmme.ac.cn/rmmeen/article/abstract/20141253. [Last accessed on 22 Oct 2024]

92. McCalla E, Abakumov AM, Saubanère M, et al. Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science 2015;350:1516-21.

93. Padhi AK, Nanjundaswamy KS, Goodenough JB. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 1997;144:1188-94.

94. Shin Y, Persson KA. Surface morphology and surface stability against oxygen loss of the lithium-excess Li2MnO3 cathode material as a function of lithium concentration. ACS Appl Mater Interfaces 2016;8:25595-602.

95. Wu Z, Ji S, Zheng J, et al. Prelithiation activates Li(Ni0.5Mn0.3Co0.2)O2 for high capacity and excellent cycling stability. Nano Lett 2015;15:5590-6.

96. Yoon S, Choi G, Lee J, Hwang J, Kim D. (In)Coherent-bond-networks in Ni-rich layered oxides for durable lithium-ion batteries. Chem Eng J 2023;458:141472.

97. Zhang R, Wang C, Zou P, et al. Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature 2022;610:67-73.

98. Song Z, Wang T, Yang H, et al. Promoting high-voltage stability through local lattice distortion of halide solid electrolytes. Nat Commun 2024;15:1481.

99. Wang T, Zhang R, Wu Y, et al. Engineering a flexible and mechanically strong composite electrolyte for solid-state lithium batteries. J Energy Chem 2020;46:187-90.

100. Wang Y, Nakamura S, Ue M, Balbuena PB. Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: reduction mechanisms of ethylene carbonate. J Am Chem Soc 2001;123:11708-18.

101. Wu Q, McDowell MT, Qi Y. Effect of the electric double layer (EDL) in multicomponent electrolyte reduction and solid electrolyte interphase (SEI) formation in lithium batteries. J Am Chem Soc 2023;145:2473-84.

102. Yan C, Li HR, Chen X, et al. Regulating the inner Helmholtz plane for stable solid electrolyte interphase on lithium metal anodes. J Am Chem Soc 2019;141:9422-9.

103. Duan J, Huang L, Wang T, et al. Shaping the contact between Li metal anode and solid-state electrolytes. Adv Funct Mater 2020;30:1908701.

104. Tobishima S, Morimoto H, Aoki M, et al. Glyme-based nonaqueous electrolytes for rechargeable lithium cells. Electrochim Acta 2004;49:979-87.

105. Ye Y, Hu Z, Liu J, et al. Research progress of theoretical studies on polarons in cathode materials of lithium-ion batteries. Acta Phys Chim Sin 2021;37:75-87.

106. Yin YC, Yang JT, Luo JD, et al. A LaCl3-based lithium superionic conductor compatible with lithium metal. Nature 2023;616:77-83.

107. Yoshida K, Nakamura M, Kazue Y, et al. Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes. J Am Chem Soc 2011;133:13121-9.

108. Rubin M, Wen SJ, Richardson T, Kerr J, von Rottkay K, Slack J. Electrochromic lithium nickel oxide by pulsed laser deposition and sputtering. Sol Energ Mat Sol C 1998;54:59-66.

109. Goodenough JB. Evolution of strategies for modern rechargeable batteries. Acc Chem Res 2013;46:1053-61.

110. Xu Z, Guo X, Song W, et al. Sulfur-assisted surface modification of lithium-rich manganese-based oxide toward high anionic redox reversibility. Adv Mater 2024;36:e2303612.

111. Yoshino A. The birth of the lithium-ion battery. Angew Chem Int Ed Engl 2012;51:5798-800.

112. Zhang T, Li D, Tao Z, Chen J. Understanding electrode materials of rechargeable lithium batteries via DFT calculations. Prog Nat Sci Mater 2013;23:256-72.

113. Zheng J, Teng G, Xin C, et al. Role of superexchange interaction on tuning of Ni/Li disordering in layered Li(NixMnyCoz)O2. J Phys Chem Lett 2017;8:5537-42.

114. Zheng J, Ye Y, Liu T, et al. Ni/Li disordering in layered transition metal oxide: electrochemical impact, origin, and control. Acc Chem Res 2019;52:2201-9.

115. Lai G, Jiao J, Fang C, et al. A deep neural network interface potential for Li-Cu systems. Adv Mater Interfaces 2022;9:2201346.

116. Lai G, Zuo Y, Jiao J, et al. The mechanism of external pressure suppressing dendrites growth in Li metal batteries. J Energy Chem 2023;79:489-94.

117. Jiao J, Lai G, Zhao L, et al. Self-healing mechanism of lithium in lithium metal. Adv Sci 2022;9:e2105574.

118. Lai G, Jiao J, Fang C, et al. The mechanism of Li deposition on the Cu substrates in the anode-free Li metal batteries. Small 2023;19:e2205416.

119. Lai G, Jiao J, Yao J, Zheng J, Ouyang C. Analysis of Li metal anode by machine learning potential. J Chin Ceram Soc 2023;51:469-75.

120. Li S, Jiang M, Xie Y, Xu H, Jia J, Li J. Developing high-performance lithium metal anode in liquid electrolytes: challenges and progress. Adv Mater 2018;30:e1706375.

121. Wang T, Duan J, Zhang B, et al. A self-regulated gradient interphase for dendrite-free solid-state Li batteries. Energy Environ Sci 2022;15:1325-33.

122. Wen J, Wang T, Wang C, et al. A tailored interface design for anode-free solid-state batteries. Adv Mater 2024;36:e2307732.

123. Zunger A. Inverse design in search of materials with target functionalities. Nat Rev Chem 2018;2:BFs415700180121.

124. Yang N, Xu X, Zheng J. Independent regulation of the lithium-ion conductivity of LiF using elemental doping: a first-principles study. Phys Rev Mater 2024;8:015403.

125. Jalem R, Chandrappa MLH, Qi J, Tateyama Y, Ong SP. Lithium dynamics at grain boundaries of β-Li3PS4 solid electrolyte. Energy Adv 2023;2:2029-41.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/