REFERENCES
1. Hirsch J. Recent development in aluminium for automotive applications. T Nonferr Metal Soc 2014;24:1995-2002.
2. Williams JC, Starke EA. Progress in structural materials for aerospace systems. Acta Mater 2003;51:5775-99.
3. Ertuğ B, Kumruoğlu LC. 5083 type Al-Mg and 6082 type Al-Mg-Si alloys for ship building Am J Eng Res 2015. pp. 146-50. Available from: https://www.ajer.org/papers/v4(03)/T04301460150.pdf. [Last accessed on 2 Nov 2024]
5. Klemens PG, Williams RK. Thermal conductivity of metals and alloys. Int Metal Rev 1986;31:197-215.
6. Pan H, Pan F, Yang R, et al. Thermal and electrical conductivity of binary magnesium alloys. J Mater Sci 2014;49:3107-24.
7. Schindler AI, Salkovitz EI. Brillouin zone investigation of Mg alloys. I. Hall Effect and conductivity. Phys Rev 1953;91:1320-2.
8. Zhou Y, Zhang X, Zhong G, et al. Elucidating thermal conductivity mechanism of Al-9Si based alloys with trace transition elements (Mn, Cr, V). J Alloys Compd 2022;907:164446.
9. Luo G, Zhou X, Li C, Du J, Huang Z. Design and preparation of Al-Fe-Ce ternary aluminum alloys with high thermal conductivity. T Nonferr Metal Soc 2022;32:1781-94.
10. Choi S, Cho H, Kumai S. Effect of the precipitation of secondary phases on the thermal diffusivity and thermal conductivity of
11. Lee W, Lee J, Kyoung W, Lee H, Lee H, Kim D. Effect of inhomogeneous composition on the thermal conductivity of an Al alloy during the precipitation-hardening process. J Mater Res Technol 2020;9:10139-47.
12. Esmaeili S, Lloyd D, Poole W. A yield strength model for the Al-Mg-Si-Cu alloy AA6111. Acta Mater 2003;51:2243-57.
13. Lin B, Fan T, Li H, Zhao Y, Zhang W, Liu K. Microstructure and high temperature tensile properties of Al–Si–Cu–Mn–Fe alloys prepared by semi-solid thixoforming. T Nonferr Metal Soc 2021;31:2232-49.
14. Chen ZQ. Combining effect of Er and Sr on microstructure and mechanical properties of As-carted A356 alloy. Rare Metal Mat Eng 2020;49:3388-94.
15. Fang Z, Roy K, Xu J, Dai Y, Paul B, Lim JB. A novel machine learning method to investigate the web crippling behaviour of perforated roll-formed aluminium alloy unlipped channels under interior-two flange loading. J Build Eng 2022;51:104261.
16. Dai Y, Roy K, Fang Z, Chen B, Raftery GM, Lim JB. A novel machine learning model to predict the moment capacity of cold-formed steel channel beams with edge-stiffened and un-stiffened web holes. J Build Eng 2022;53:104592.
17. Juan Y, Niu G, Yang Y, Dai Y, Yang J, Zhang J. Machine learning-based identification method of new strengthening element and the study on Al-Zn-Mg-Cu-Zr-Hf alloy. Maters Today Commun 2024;38:108359.
18. Juan Y, Niu G, Yang Y, et al. Accelerated design of Al−Zn−Mg−Cu alloys via machine learning. T Nonferr Metal Soc 2024;34:709-23.
19. Jain S, Jain R, Dewangan S, Bhowmik A. A machine learning perspective on hardness prediction in multicomponent Al-Mg based lightweight alloys. Mater Lett 2024;365:136473.
20. Motamedi M, Nikzad MH, Nasri MR. Mixture design optimization and machine learning-based prediction of Al-Mg alloy composite reinforced by Zn nanoparticles: a molecular dynamics study. Mater Today Commun 2023;37:107473.
21. Shen Q, Yin Q, Zhao H, et al. Inversely optimized design of Al-Mg-Si alloys using machine learning methods. Comput Mater Sci 2024;242:113107.
22. Xue D, Wei W, Shi W, et al. Optimization of stabilized annealing of Al-Mg alloys utilizing machine learning algorithms. Mater Today Commun 2023;35:106177.
23. Fatriansyah JF, Satrio MRR, Federico A, Suhariadi I, Dhaneswara D, Gascoin N. Machine learning-based forward and inverse designs for prediction and optimization of fracture toughness of aluminum alloy. Results Eng 2024;23:102717.
24. Jiang L, Fu H, Zhang Z, et al. Synchronously enhancing the strength, toughness, and stress corrosion resistance of high-end aluminum alloys via interpretable machine learning. Acta Mater 2024;270:119873.
25. Santhosh N, Praveena B, Jain R, et al. Analysis of friction and wear of aluminium AA 5083/WC composites for building applications using advanced machine learning models. Ain Shams Eng J 2023;14:102090.
26. Jiang L, Wang C, Fu H, Shen J, Zhang Z, Xie J. Discovery of aluminum alloys with ultra-strength and high-toughness via a property-oriented design strategy. J Mater Sci Technol 2022;98:33-43.
27. Li H, Li X, Li Y, et al. Machine learning assisted design of aluminum-lithium alloy with high specific modulus and specific strength. Mater Design 2023;225:111483.
28. Mokhtari MA, Nikzad MH. Multi-objective optimization and comparison of machine learning algorithms for the prediction of tensile properties of aluminum-magnesium alloy. Mater Today Commun 2024;40:109476.
29. Chaudry U, Hamad K, Abuhmed T. Machine learning-aided design of aluminum alloys with high performance. Mater Today Commun 2021;26:101897.
30. Suh JS, Kim YM, Yim CD, Suh B, Bae JH, Lee HW. Interpretable machine learning-based analysis of mechanical properties of extruded Mg-Al-Zn-Mn-Ca-Y alloys. J Alloys Compd 2023;968:172007.
31. Zille H, Ishibuchi H, Mostaghim S, Nojima Y. Weighted optimization framework for large-scale multi-objective optimization. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion; Denver, USA; 2016. pp. 83-4.
32. Bai P, Shang C, Zhu D, et al. The interpretable descriptors for fatigue performance of wrought aluminum alloys. J Mater Res Technol 2024;32:3423-31.
33. Bak C, Roy AG, Son H. Quality prediction for aluminum diecasting process based on shallow neural network and data feature selection technique. CIRP J Manuf Sci Tec 2021;33:327-38.
34. Dong ZQ, Wang JG, Guan ZP, et al. Effect of short T6 heat treatment on the thermal conductivity and mechanical properties of different casting processes Al-Si-Mg-Cu alloys. Metals 2021;11:1450.
35. Bolibruchová D, Širanec L, Matejka M. Selected properties of a Zr-containing AlSi5Cu2Mg alloy intended for cylinder head castings. Materials 2022;15:4798.
36. Lumley RN, Deeva N, Larsen R, Gembarovic J, Freeman J. The role of alloy composition and T7 heat treatment in enhancing thermal conductivity of aluminum high pressure diecastings. Metall Mater Trans A 2013;44:1074-86.
37. Zhang H, Fu H, Zhu S, Yong W, Xie J. Machine learning assisted composition effective design for precipitation strengthened copper alloys. Acta Mater 2021;215:117118.
38. Carruthers C, Teitelbaum H. The linear mixture rule in chemical kinetics. II. Thermal dissociation of diatomic molecules. Chem Phys 1988;127:351-62.
39. Jain A, Ong SP, Hautier G, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater 2013;1:011002.
41. Li Z, Long Z, Lei S, Yang L, Zhang W, Zhang T. Explicit expressions of the saturation flux density and thermal stability in Fe-based metallic glasses based on Lasso regression. Intermetallics 2021;139:107361.
42. Raguraman S, Priyadarshini MS, Nguyen T, et al. Machine learning-guided accelerated discovery of structure-property correlations in lean magnesium alloys for biomedical applications. J Magnes Alloy 2024;12:2267-83.
43. Ho TK. Random decision forests. In Proceedings of 3rd International Conference on Document Analysis and Recognition; 1995 Aug 14-16; Montreal, Canada. IEEE; 2002. pp. 278-82.
44. Yao F, You G, Zeng S, Zhou K, Peng L, Ming Y. Fabrication, microstructure, and thermal conductivity of multilayered Cu mesh/AZ31 Mg foil composites. J Mater Res Technol 2021;14:1539-50.
45. Wang K, Li W, Xu W, Hou S, Hu S. Simultaneous improvement of thermal conductivity and strength for commercial A356 alloy using strontium modification process. Met Mater Int 2021;27:4742-56.
46. Vandersluis E, Bois-brochu A, Ravindran C, Chiesa F. Mechanical properties and conductivity of low-pressure die-cast 319 aluminum prepared with hot isostatic pressing, thermal treatment, or chemical treatment. J Mater Eng Perform 2020;29:2335-45.
47. Yang Z, He X, Li B, Atrens A, Yang X, Cheng H. Influence of Si, Cu, B, and trace alloying elements on the conductivity of the Al-Si-Cu alloy. Materials 2022;15:426.
48. Kim CW, Cho JI, Choi SW, Kim YC. The effect of alloying elements on thermal conductivity of aluminum alloys in high pressure die casting. Adv Mater Res 2013;813:175-8.
49. Luo G, Zhou X, Li C, Huang Z, Du J. A Quantitative study on the interaction between silicon content and heat treatment on thermal conductivity of Al-Si binary alloys. Int J Metalcast 2022;16:1585-94.
50. Gan J, Du J, Wen C, Zhang G, Shi M, Yuan Z. The effect of Fe content on the solidification pathway, microstructure and thermal conductivity of hypoeutectic Al–Si alloys. Int J Metalcast 2022;16:178-90.
51. Tian L, Anderson I, Riedemann T, Russell A. Modeling the electrical resistivity of deformation processed metal–metal composites. Acta Mater 2014;77:151-61.
52. Gan J, Huang Y, Du J, Wen C, Liu J. Synchronous improvement in thermal conductivity and mechanical properties of Al–7Si–0.6Fe–0.5Zn cast alloy by B/La/Sr composite modification. Mater Res Express 2020;7:086501.
53. Mulazimoglu MH, Drew RAL, Gruzleski JE. Solution treatment study of cast Al–Si alloys by electrical conductivity. Can Metall Quart 1989;28:251-8.
54. Li K, Zhang J, Chen X, et al. Microstructure evolution of eutectic Si in Al-7Si binary alloy by heat treatment and its effect on enhancing thermal conductivity. J Mater Res Technol 2020;9:8780-6.
55. Shanmugasundaram T, Heilmaier M, Murty B, Sarma VS. On the Hall–Petch relationship in a nanostructured Al–Cu alloy. Mat Sci Eng A 2010;527:7821-5.
56. Kammer C. Aluminum and aluminum alloys. In: Warlimont H, Martienssen W, Editors. Springer handbook of materials data. Springer International Publishing; 2018. pp. 161-97.
57. Zou Y, Wu X, Tang S, et al. Investigation on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys with various Zn/Mg ratios. J Mater Sci Technol 2021;85:106-17.
58. Hansen N. The effect of grain size and strain on the tensile flow stress of aluminium at room temperature. Acta Metall 1977;25:863-9.
59. Thangaraju S, Heilmaier M, Murty BS, Vadlamani SS. On the estimation of true Hall–Petch constants and their role on the superposition law exponent in Al alloys. Adv Eng Mater 2012;14:892-7.
60. Lee S, Seo N, Kang M, Son SB, Lee S, Jung J. Natural aging-induced nanoprecipitation and its impact on tensile properties of Al–Si–Cu–Mg cast alloy. Mater Charact 2024;215:114204.
61. Gomes LF, Spinelli J, Bogno A, Gallerneault M, Henein H. Influence of annealing treatment on Si morphology and strength of rapid solidified Al-12 wt% Si powders. J Alloys Compd 2019;785:1077-85.
62. Zheng G, Li H, Lei C, Fu J, Bian T, Yang J. Natural aging behaviors and mechanisms of 7050 and 5A90 Al alloys: a comparative study. Mat Sci Eng A 2018;718:157-64.
63. Zhang X, Huang L, Zhang B, Chen Y, Liu F. Microstructural evolution and strengthening mechanism of an Al–Si–Mg alloy processed by high-pressure torsion with different heat treatments. Mat Sci Eng A 2020;794:139932.
64. Shin J, Ko S, Kim K. Development and characterization of low-silicon cast aluminum alloys for thermal dissipation. J Alloys Compd 2015;644:673-86.
65. Klemens PG. Deviations from Matthiessen’s rule and the electronic thermal conductivity of alloys. In: Mirkovich VV, Editor. Thermal conductivity 15. Springer US; 1978. pp. 203-7.
66. Chen JK, Hung HY, Wang CF, Tang NK. Thermal and electrical conductivity in Al–Si/Cu/Fe/Mg binary and ternary Al alloys. J Mater Sci 2015;50:5630-9.
67. Wang Y, Cao L, Wu X, Lin X, Yao T, Peng L. Multi-alloying effect of Ti, Mn, Cr, Zr, Er on the cast Al-Zn-Mg-Cu alloys. Mater Charact 2023;201:112984.
68. Li H, Cao F, Guo S, et al. Effects of Mg and Cu on microstructures and properties of spray-deposited Al-Zn-Mg-Cu alloys. J Alloys Compd 2017;719:89-96.
69. Ma K, Wen H, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater 2014;62:141-55.