REFERENCES

1. Barsoum MW. MAX phases: properties of machinable ternary carbides and nitrides. 1st ed. Wiley; 2013.

2. Tzenov NV, Barsoum MW. Synthesis and characterization of Ti3AlC2. J Am Ceram Soc 2000;83:825-32.

3. Dahlqvist M, Barsoum MW, Rosen J. MAX phases - Past, present, and future. Mater Today 2024;72:1-24.

4. Gonzalez-Julian J, Mauer G, Sebold D, Mack DE, Vassen R. Cr2AlC MAX phase as bond coat for thermal barrier coatings: processing, testing under thermal gradient loading, and future challenges. J Am Ceram Soc 2020;103:2362-75.

5. Smialek JL. Oxidation of Al2O3 scale-forming MAX phases in turbine environments. Metall Mater Trans A 2018;49:782-92.

6. Sun ZM. Progress in research and development on MAX phases: a family of layered ternary compounds. Int Mater Rev 2011;56:143-66.

7. Guo L, Yan Z, Wang X, He Q. Ti2AlC MAX phase for resistance against CMAS attack to thermal barrier coatings. Ceram Int 2019;45:7627-34.

8. Lapauw T, Tunca B, Joris J, et al. Interaction of Mn+1AXn phases with oxygen-poor, static and fast-flowing liquid lead-bismuth eutectic. J Nucl Mater 2019;520:258-72.

9. Chirica IM, Mirea AG, Neaţu Ş, Florea M, Barsoum MW, Neaţu F. Applications of MAX phases and MXenes as catalysts. J Mater Chem A 2021;9:19589-612.

10. Ward L, Dunn A, Faghaninia A, et al. Matminer: an open source toolkit for materials data mining. Comput Mater Sci 2018;152:60-9.

11. Sparks TD, Kauwe SK, Parry ME, Tehrani AM, Brgoch J. Machine learning for structural materials. Annu Rev Mater Res 2020;50:27-48.

12. Mansouri Tehrani A, Oliynyk AO, Parry M, et al. Machine learning directed search for ultraincompressible, superhard materials. J Am Chem Soc 2018;140:9844-53.

13. Sayeed HM, Smallwood W, Baird SG, Sparks TD. NLP meets materials science: quantifying the presentation of materials data in literature. Matter 2024;7:723-7.

14. Seegmiller CC, Baird SG, Sayeed HM, Sparks TD. Discovering chemically novel, high-temperature superconductors. Comput Mater Sci 2023;228:112358.

15. Alverson M, Baird SG, Murdock R, Ho SH, Johnson J, Sparks TD. Generative adversarial networks and diffusion models in material discovery. Digit Discov 2024;3:62-80.

16. Wang AYT, Kauwe SK, Murdock RJ, Sparks TD. Compositionally restricted attention-based network for materials property predictions. npj Comput Mater 2021;7:545.

17. Merchant A, Batzner S, Schoenholz SS, Aykol M, Cheon G, Cubuk ED. Scaling deep learning for materials discovery. Nature 2023;624:80-5.

18. Fuhr AS, Sumpter BG. Deep generative models for materials discovery and machine learning-accelerated innovation. Front Mater 2022;9:865270.

19. Shetty P, Adeboye A, Gupta S, Zhang C, Ramprasad R. Accelerating materials discovery for polymer solar cells: data-driven insights enabled by natural language processing. arXiv. [Preprint.] Jun 22, 2024 [accessed 2024 Aug 24]. Available from: https://arxiv.org/abs/2402.19462.

20. Alghofaili YA, Alghadeer M, Alsaui AA, Alqahtani SM, Alharbi FH. Accelerating materials discovery through machine learning: predicting crystallographic symmetry groups. J Phys Chem C 2023;127:16645-53.

21. Ward L, Agrawal A, Choudhary A, Wolverton C. A general-purpose machine learning framework for predicting properties of inorganic materials. npj Comput Mater 2016;2:16028.

22. Li H, Li X, Li Y, et al. Machine learning assisted design of aluminum-lithium alloy with high specific modulus and specific strength. Mater Design 2023;225:111483.

23. Mohanty T, Chandran KSR, Sparks TD. Machine learning guided optimal composition selection of niobium alloys for high temperature applications. APL Mach Learn 2023;1:036102.

24. Cover MF, Warschkow O, Bilek MMM, McKenzie DR. A comprehensive survey of M2AX phase elastic properties. J Phys Condens Matter 2009;21:305403.

25. Head T, Kumar M, Nahrstaedt H, Louppe G, Shcherbatyi I. Scikit-optimize/scikit-optimize. 2020. Available from: https://zenodo.org/records/4014775. [Last accessed on 24 Aug 2024].

26. Ali MA, Hossain MM, Uddin MM, Islam AKMA, Naqib SH. The rise of 212 MAX phase borides: DFT insights into the physical properties of Ti2PB2, Zr2PbB2, and Nb2AB2 [A = P, S] for thermomechanical applications. ACS Omega 2023;8:954-68.

27. Zhang Q, Zhou Y, San X, et al. Zr2SeB and Hf2SeB: two new MAB phase compounds with the Cr2AlC-type MAX phase (211 phase) crystal structures. J Adv Ceram 2022;11:1764-76.

28. Rackl T, Johrendt D. The MAX phase borides Zr2SB and Hf2SB. Solid State Sci 2020;106:106316.

29. Rackl T, Eisenburger L, Niklaus R, Johrendt D. Syntheses and physical properties of the MAX phase boride Nb2SB and the solid solutions Nb2SBxC1-x(x = 0-1). Phys Rev Mater 2019;3:054001.

30. Ashton M, Hennig RG, Broderick SR, Rajan K, Sinnott SB. Computational discovery of stable M2AX phases. Phys Rev B 2016;94:054116.

31. Ohmer D, Qiang G, Opahle I, Singh HK, Zhang H. High-throughput design of 211 - M2AX compounds. Phys Rev Mater 2019;3:053803.

32. Ohmer D, Opahle I, Singh HK, Zhang H. Stability predictions of magnetic M2AX compounds. J Phys Condens Matter 2019;31:405902.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/