REFERENCES

1. Bidwell, D. Thinking through participation in renewable energy decisions. Nat. Energy. 2016, 1, 16051.

2. Yu, N.; Bello, I. T.; Chen, X.; et al. Rational design of Ruddlesden-Popper perovskite ferrites as air electrode for highly active and durable reversible protonic ceramic cells. Nanomicro. Lett. 2024, 16, 177.

3. Li, J. Oxygen evolution reaction in energy conversion and storage: design strategies under and beyond the energy scaling relationship. Nanomicro. Lett. 2022, 14, 112.

4. Kim, D.; Jeong, I.; Ahn, S.; et al. On the role of bimetal-doped BaCoO3-δ perovskites as highly active oxygen electrodes of protonic ceramic electrochemical cells. Adv. Energy. Mater. 2024, 14, 2304059.

5. Jang, I.; Carneiro, J. S. A.; Crawford, J. O.; et al. Electrocatalysis in solid oxide fuel cells and electrolyzers. Chem. Rev. 2024, 124, 8233-306.

6. Zhang, W.; Liu, M.; Gu, X.; Shi, Y.; Deng, Z.; Cai, N. Water electrolysis toward elevated temperature: advances, challenges and frontiers. Chem. Rev. 2023, 123, 7119-92.

7. Ivanova, M. E.; Peters, R.; Müller, M.; et al. Technological pathways to produce compressed and highly pure hydrogen from solar power. Angew. Chem. Int. Ed. Engl. 2023, 62, e202218850.

8. Tang, C.; Yao, Y.; Wang, N.; et al. Green hydrogen production by intermediate-temperature protonic solid oxide electrolysis cells: advances, challenges, and perspectives. InfoMat 2024, 6, e12515.

9. Liu, Y.; Feng, Q.; Liu, W.; et al. Boosting interfacial charge transfer for alkaline hydrogen evolution via rational interior Se modification. Nano. Energy. 2021, 81, 105641.

10. Lei, Y.; Wang, Y.; Liu, Y.; et al. Designing atomic active centers for hydrogen evolution electrocatalysts. Angew. Chem. Int. Ed. Engl. 2020, 59, 20794-812.

11. Zhai, S.; Xie, H.; Cui, P.; et al. A combined ionic Lewis acid descriptor and machine-learning approach to prediction of efficient oxygen reduction electrodes for ceramic fuel cells. Nat. Energy. 2022, 7, 866-75.

12. Mo, S.; Du, L.; Huang, Z.; et al. Recent advances on PEM fuel cells: from key materials to membrane electrode assembly. Electrochem. Energy. Rev. 2023, 6, 190.

13. Zhao, S.; Ma, W.; Wang, W.; et al. Reverse atom capture on perovskite surface enabling robust and efficient cathode for protonic ceramic fuel cells. Adv. Mater. 2024, 36, e2405052.

14. Liu, Z.; Bai, Y.; Sun, H.; et al. Synergistic dual-phase air electrode enables high and durable performance of reversible proton ceramic electrochemical cells. Nat. Commun. 2024, 15, 472.

15. Li, Z.; Mao, X.; Feng, D.; et al. Prediction of perovskite oxygen vacancies for oxygen electrocatalysis at different temperatures. Nat. Commun. 2024, 15, 9318.

16. Murphy, R.; Zhou, Y.; Zhang, L.; et al. A new family of proton-conducting electrolytes for reversible solid oxide cells: BaHfxCe0.8-xY0.1Yb0.1O3-δ. Adv. Funct. Mater. 2020, 30, 2002265.

17. Matsumoto, H.; Sakai, T.; Okuyama, Y. Proton-conducting oxide and applications to hydrogen energy devices. Pure. Appl. Chem. 2012, 85, 427-35.

18. Jing, J.; Pang, J.; Chen, L.; Zhang, H.; Lei, Z.; Yang, Z. Structure, synthesis, properties and solid oxide electrolysis cells application of Ba(Ce, Zr)O3 based proton conducting materials. Chem. Eng. J. 2022, 429, 132314.

19. Li, S.; Xie, K. Composite oxygen electrode based on LSCF and BSCF for steam electrolysis in a proton-conducting solid oxide electrolyzer. J. Electrochem. Soc. 2013, 160, F224-33.

20. Yoo, Y.; Lim, N. Performance and stability of proton conducting solid oxide fuel cells based on yttrium-doped barium cerate-zirconate thin-film electrolyte. J. Power. Sources. 2013, 229, 48-57.

21. Zhou, D.; Fu, J.; Dong, X.; Yin, Y.; Wang, Z.; Xu, J. A facial and effective way to prepare high-performance hetero-structured composite cathode for intermediate temperature solid oxide fuel cells. Int. J. Hydrogen. Energy. 2022, 47, 13112-20.

22. Xiong, D.; Rasaki, S. A.; Li, Y.; Fan, L.; Liu, C.; Chen, Z. Enhanced cathodic activity by tantalum inclusion at B-site of La0.6Sr0.4CO0.4Fe0.6O3 based on structural property tailored via camphor-assisted solid-state reaction. J. Adv. Ceram. 2022, 11, 1330-42.

23. Wang, N.; Tang, C.; Du, L.; et al. Advanced cathode materials for protonic ceramic fuel cells: recent progress and future perspectives. Adv. Energy. Mater. 2022, 12, 2201882.

24. Zhang, X.; Tang, C.; Yang, Y.; et al. Novel high-entropy air electrodes enhancing electrochemical performances of reversible protonic ceramic cells. Adv. Funct. Mater.2025, 2421083.

25. Fop, S. Solid oxide proton conductors beyond perovskites. J. Mater. Chem. A. 2021, 9, 18836-56.

26. Li, Y.; Li, Y.; Zhang, S.; et al. Mutual conversion of CO-CO2 on a perovskite fuel electrode with endogenous alloy nanoparticles for reversible solid oxide cells. ACS. Appl. Mater. Interfaces. 2022, 14, 9138-50.

27. Kojima, H.; Nagasawa, K.; Todoroki, N.; Ito, Y.; Matsui, T.; Nakajima, R. Influence of renewable energy power fluctuations on water electrolysis for green hydrogen production. Int. J. Hydrogen. Energy. 2023, 48, 4572-93.

28. Wang, M.; Rao, R.; Zhu, L. Exploring phase transitions in CdSe: a machine learning and swarm intelligence approach. J. Mater. Inf. 2024, 4, 29.

29. Lu, Z.; Kapoor, I.; Li, Y.; Liu, Y.; Zeng, X.; Wang, L. Machine learning driven design of high-performance Al alloys. J. Mater. Inf. 2024, 4, 19.

30. Liu, H.; Cui, Z.; Qiao, Z.; An, X.; Wang, Y. Machine learning-assisted prediction, screen, and interpretation of porous carbon materials for high-performance supercapacitors. J. Mater. Inf. 2024, 4, 16.

31. Szymanski, N. J.; Rendy, B.; Fei, Y.; et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 2023, 624, 86-91.

32. Moon, J.; Beker, W.; Siek, M.; et al. Active learning guides discovery of a champion four-metal perovskite oxide for oxygen evolution electrocatalysis. Nat. Mater. 2024, 23, 108-15.

33. Merchant, A.; Batzner, S.; Schoenholz, S. S.; Aykol, M.; Cheon, G.; Cubuk, E. D. Scaling deep learning for materials discovery. Nature 2023, 624, 80-5.

34. Mao, Y.; Hasan, M.; Paul, A.; et al. An AI-driven microstructure optimization framework for elastic properties of titanium beyond cubic crystal systems. npj. Comput. Mater. 2023, 9, 1067.

35. Yang, K.; Liu, J.; Wang, Y.; et al. Machine-learning-assisted prediction of long-term performance degradation on solid oxide fuel cell cathodes induced by chromium poisoning. J. Mater. Chem. A. 2022, 10, 23683-90.

36. Wang, N.; Yuan, B.; Tang, C.; et al. Machine-learning-accelerated development of efficient mixed protonic-electronic conducting oxides as the air electrodes for protonic ceramic cells. Adv. Mater. 2022, 34, e2203446.

37. Yuan, B.; Wang, N.; Tang, C.; et al. Advances and challenges in high-performance cathodes for protonic solid oxide fuel cells and machine learning-guided perspectives. Nano. Energy. 2024, 122, 109306.

38. Hyodo, J.; Tsujikawa, K.; Shiga, M.; Okuyama, Y.; Yamazaki, Y. Accelerated discovery of proton-conducting perovskite oxide by capturing physicochemical fundamentals of hydration. ACS. Energy. Lett. 2021, 6, 2985-92.

39. Luo, Z.; Hu, X.; Zhou, Y.; et al. Harnessing high-throughput computational methods to accelerate the discovery of optimal proton conductors for high-performance and durable protonic ceramic electrochemical Cells. Adv. Mater. 2024, 36, e2311159.

40. Zhang, W.; Zhou, Y.; Hu, X.; et al. A synergistic three-phase, triple-conducting air electrode for reversible proton-conducting solid oxide cells. ACS. Energy. Lett. 2023, 8, 3999-4007.

41. Wang, N.; Yuan, B.; Zheng, F.; et al. Machine-learning assisted screening proton conducting Co/Fe based oxide for the air electrode of protonic solid oxide cell. Adv. Funct. Mater. 2024, 34, 2309855.

42. Tang, C.; Yuan, B.; Zhang, X. Rationally designed air electrode boosting electrochemical performance of protonic ceramic cells. Adv. Energy. Mater.2025, 2402654.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/