REFERENCES

1. Bartók AP, Csányi G. Gaussian approximation potentials: a brief tutorial introduction. Int J Quantum Chem 2015;115:1051-7.

2. Dragoni D, Daff TD, Csányi G, Marzari N. Achieving DFT accuracy with a machine-learning interatomic potential: thermomechanics and defects in bcc ferromagnetic iron. Phys Rev Mater 2018;2:013808.

3. Bartók AP, Payne MC, Kondor R, Csányi G. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys Rev Lett 2010;104:136403.

4. Szlachta WJ, Bartók AP, Csányi G. Accuracy and transferability of Gaussian approximation potential models for tungsten. Phys Rev B 2014;90:104108.

5. Botu V, Ramprasad R. Learning scheme to predict atomic forces and accelerate materials simulations. Phys Rev B 2015;92:094306.

6. Li Z, Kermode JR, De Vita A. Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. Phys Rev Lett 2015;114:096405.

7. Novikov IS, Gubaev K, Podryabinkin EV, Shapeev AV. The MLIP package: moment tensor potentials with MPI and active learning. Mach Learn Sci Technol 2021;2:025002.

8. Shapeev AV. Moment tensor potentials: a class of systematically improvable interatomic potentials. Multiscale Model Simul 2016;14:1153-73.

9. Novikov IS, Suleimanov YV, Shapeev AV. Automated calculation of thermal rate coefficients using ring polymer molecular dynamics and machine-learning interatomic potentials with active learning. Phys Chem Chem Phys 2018;20:29503-12.

10. Zeng J, Zhang D, Lu D, et al. DeePMD-kit v2: a software package for deep potential models. J Chem Phys 2023;159:054801.

11. Li J, An Q. Quasiplastic deformation in shocked nanocrystalline boron carbide: grain boundary sliding and local amorphization. J Eur Ceram Soc 2023;43:208-16.

12. Pitike KC, Setyawan W. Accurate Fe-He machine learning potential for studying He effects in BCC-Fe. J Nucl Mater 2023;574:154183.

13. Zhai B, Wang HP. Accurate interatomic potential for the nucleation in liquid Ti-Al binary alloy developed by deep neural network learning method. Comput Mater Sci 2023;216:111843.

14. Lyakhov AO, Oganov AR, Stokes HT, Zhu Q. New developments in evolutionary structure prediction algorithm USPEX. Comput Phys Commun 2013;184:1172-82.

15. Zhu Q, Oganov AR, Glass CW, Stokes HT. Constrained evolutionary algorithm for structure prediction of molecular crystals: methodology and applications. Acta Crystal Sect B Struct Sci 2012;68:215-26.

16. Wang Y, Lv J, Zhu L, Ma Y. CALYPSO: a method for crystal structure prediction. Comput Phys Commun 2012;183:2063-70.

17. Yamashita T, Kanehira S, Sato N, et al. CrySPY: a crystal structure prediction tool accelerated by machine learning. Sci Technol Adv Mater Methods 2021;1:87-97.

18. Li C, Wang C, Sun M, et al. Correlated RNN framework to quickly generate molecules with desired properties for energetic materials in the low data regime. J Chem Inf Model 2022;62:4873-87.

19. Choudhary K, DeCost B, Chen C, et al. Recent advances and applications of deep learning methods in materials science. npj Comput Mater 2022;8:59.

20. Hong C, Choi JM, Jeong W, et al. Training machine-learning potentials for crystal structure prediction using disordered structures. Phys Rev B 2020;102:224104.

21. Chen WC, Schmidt JN, Yan D, Vohra YK, Chen CC. Machine learning and evolutionary prediction of superhard B-C-N compounds. npj Comput Mater 2021;7:114.

22. Chen WC, Vohra YK, Chen CC. Discovering superhard B-N-O compounds by iterative machine learning and evolutionary structure predictions. ACS Omega 2022;7:21035-42.

23. Kruglov IA, Yanilkin A, Oganov AR, Korotaev P. Phase diagram of uranium from ab initio calculations and machine learning. Phys Rev B 2019;100:174104.

24. Podryabinkin EV, Tikhonov EV, Shapeev AV, Oganov AR. Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning. Phys Rev B 2019;99:064114.

25. Bereznikova LA, Propad YV, Kruglov IA. Nitrogen phase diagram at high P-T conditions by the T-USPEX method. J Phys Chem C 2023;127:5683-8.

26. Pakhnova M, Kruglov I, Yanilkin A, Oganov AR. Search for stable cocrystals of energetic materials using the evolutionary algorithm USPEX. Phys Chem Chem Phys 2020;22:16822-30.

27. Wang C, Ni Y, Zhang C, Xue X. Crystal structure prediction of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) by a tailor-made OPLS-AA force field. Cryst Growth Des 2021;21:3037-46.

28. Wespiser C, Mathieu D. Application of machine learning to the design of energetic materials: preliminary experience and comparison with alternative techniques. Prop Explos Pyrotech 2023;48:e202200264.

29. Zhang Y, Wang H, Chen W, et al. DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models. Comput Phys Commun 2020;253:107206.

30. Vandermause J, Torrisi SB, Batzner S, et al. On-the-fly active learning of interpretable Bayesian force fields for atomistic rare events. npj Comput Mater 2020;6:20.

31. Venkata Viswanath J, Venugopal KJ, Srinivasa Rao NV, Venkataraman A. An overview on importance, synthetic strategies and studies of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW). Def Technol 2016;12:401-18.

32. Taylor JW, Crookes RJ. Vapour pressure and enthalpy of sublimation of 1,3,5,7-tetranitro-1,3,5,7-tetra-azacyclo-octane (HMX). J Chem Soc Faraday Trans 1 1976;72:723-9.

33. Tariq QuN, Tariq MuN, Dong WS, Manzoor S, Arshad F, Zhang JG. Comparative studies of synthesis, performance, and applications of recently developed CL-20 based co-crystals. Cryst Growth Des 2023;23:6974-87.

34. Yang Z, Li H, Zhou X, Zhang C, et al. Characterization and properties of a novel energetic-energetic cocrystal explosive composed of HNIW and BTF. Cryst Growth Des 2012;12:5155-8.

35. Xu H, Duan X, Li H, Pei C. A novel high-energetic and good-sensitive cocrystal composed of CL-20 and TATB by a rapid solvent/non-solvent method. RSC Adv 2015;5:95764-70.

36. Liu N, Duan B, Lu X, et al. Preparation of CL-20/DNDAP cocrystals by a rapid and continuous spray drying method: an alternative to cocrystal formation. Cryst Eng Comm 2018;20:2060-7.

37. Wang Y, Yang Z, Li H, et al. A novel cocrystal explosive of HNIW with good comprehensive properties. Prop Explos Pyrotech 2014;39:590-6.

38. Bolton O, Simke LR, Pagoria PF, Matzger AJ. High power explosive with good sensitivity: a 2:1 cocrystal of CL-20:HMX. Cryst Growth Des 2012;12:4311-4.

39. Corpinot MK, Bučar DK. A practical guide to the design of molecular crystals. Cryst Growth Des 2019;19:1426-53.

40. van Duin ACT, Dasgupta S, Lorant F, Goddard WA. ReaxFF: A reactive force field for hydrocarbons. J Phys Chem A 2001;105:9396-409.

41. Senftle TP, Hong S, Islam MM, et al. The ReaxFF reactive force-field: development, applications and future directions. npj Comput Mater 2016;2:15011.

42. Han Y, Jiang D, Zhang J, Li W, Gan Z, Gu J. Development, applications and challenges of ReaxFF reactive force field in molecular simulations. Front Chem Sci Eng 2016;10:16-38.

43. Chenoweth K, van Duin ACT, Goddard WA. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J Phys Chem A 2008;112:1040-53.

44. Guo F, Zhang H, Hu HQ, Cheng XL. Effects of hydrogen bonds on solid state TATB, RDX, and DATB under high pressures. Chin Phys B 2014;23:046501.

45. Liu J, Li X, Guo L, et al. Reaction analysis and visualization of ReaxFF molecular dynamics simulations. J Mol Graphics Modell 2014;53:13-22.

46. Zhou T, Song H, Liu Y, Huang F. Shock initiated thermal and chemical responses of HMX crystal from ReaxFF molecular dynamics simulation. Phys Chem Chem Phys 2014;16:13914-31.

47. Huang X, Guo F, Yao K, et al. Anisotropic hydrogen bond structures and orientation dependence of shock sensitivity in crystalline 1,3,5-tri-amino-2,4,6-tri-nitrobenzene (TATB). Phys Chem Chem Phys 2020;22:11956-66.

48. Daksha CM, Yeon J, Chowdhury SC, Gillespie JW Jr. Automated ReaxFF parametrization using machine learning. Comput Mater Sci 2021;187:110107.

49. Bu Y, Guo F, Li K, et al. High-temperature pyrolysis behavior and structural evolution mechanism of graphene oxide: a ReaxFF molecular dynamics simulation. Appl Surf Sci 2022;593:153451.

50. Jiang J, Wang HR, Zhao FQ, Xu SY, Ju XH. Decomposition mechanism of 1,3,5-trinitro-2,4,6-trinitroaminobenzene under thermal and shock stimuli using ReaxFF molecular dynamics simulations. Phys Chem Chem Phys 2023;25:3799-805.

51. Feng S, Guo F, Yuan C, et al. Effect of neutron irradiation on structure and decomposition of $$\alpha$$-RDX: a ReaxFF molecular dynamics study. Comput Theor Chem 2023;1219:113965.

52. Xue LY, Guo F, Wen YS, et al. ReaxFF-MPNN machine learning potential: a combination of reactive force field and message passing neural networks. Phys Chem Chem Phys 2021;23:19457-64.

53. Guo F, Wen YS, Feng SQ, et al. Intelligent-ReaxFF: evaluating the reactive force field parameters with machine learning. Comput Mater Sci 2020;172:109393.

54. Friederich P, Häse F, Proppe J, Aspuru-Guzik A. Machine-learned potentials for next-generation matter simulations. Nat Mater 2021;20:750-61.

55. Schütt KT, Sauceda HE, Kindermans PJ, Tkatchenko A, Müller KR. SchNet - A deep learning architecture for molecules and materials. J Chem Phys 2018;148:241722.

56. Yoo P, Sakano M, Desai S, Islam MM, Liao P, Strachan A. Neural network reactive force field for C, H, N, and O systems. npj Comput Mater 2021;7:9.

57. Rappe AK, Goddard WA III. Charge equilibration for molecular dynamics simulations. J Phys Chem 1991;95:3358-63.

58. Islam MM, Kolesov G, Verstraelen T, Kaxiras E, van Duin ACT. eReaxFF: a pseudoclassical treatment of explicit electrons within reactive force field simulations. J Chem Theory Comput 2016;12:3463-72.

59. Larsen AH, Mortensen JJ, Blomqvist J, et al. The atomic simulation environment - a Python library for working with atoms. J Phys: Condens Matter 2017;29:273002.

60. Guo F. I-ReaxFF: intelligent-reactive force field. Available from: https://github.com/fenggo/I-ReaxFF. [Last accessed on 15 May 2024].

61. Sivaraman G, Krishnamoorthy AN, Baur M, et al. Machine-learned interatomic potentials by active learning: amorphous and liquid hafnium dioxide. npj Comput Mater 2020;6:104.

62. Shi B, Zhou Y, Fang D, et al. Estimating the performance of a material in its service space via Bayesian active learning: a case study of the damping capacity of Mg alloys. J Mater Inf 2022;2:8.

63. Landenberger KB, Matzger AJ. Cocrystals of 1,3,5,7-Tetranitro-1,3,5,7-tetrazacyclooctane (HMX). Cryst Growth Des 2012;12:3603-9.

64. Millar DIA, Maynard-Casely HE, Allan DR, et al. Crystal engineering of energetic materials: co-crystals of CL-20. Cryst Eng Comm 2012;14:3742-9.

65. Bidault X, Chaudhuri S. A flexible-molecule force field to model and study hexanitrohexaazaisowurtzitane (CL-20) - polymorphism under extreme conditions. RSC Adv 2019;9:39649-61.

66. Zhang XQ, Chen XR, Kaliamurthi S, Selvaraj G, Ji GF, Wei DQ. Initial decomposition of the co-crystal of CL-20/TNT: sensitivity decrease under shock loading. J Phys Chem C 2018;122:24270-8.

67. Zhang XQ, Yuan JN, Selvaraj G, Ji GF, Chen XR, Wei DQ. Towards the low-sensitive and high-energetic co-crystal explosive CL-20/TNT: from intermolecular interactions to structures and properties. Phys Chem Chem Phys 2018;20:17253-61.

68. Bolotina NB, Hardie MJ, Speer RL Jr, Pinkerton AA. Energetic materials: variable-temperature crystal structures of $$\gamma$$- and $$\varepsilon$$-HNIW polymorphs. J Appl Cryst 2004;37:808-14.

69. Cawkwell MJ, Zecevic M, Luscher DJ, Ramos KJ. Dependence of the elastic stiffness tensors of PETN, $$\alpha$$-RDX, $$\gamma$$-RDX, $$\varepsilon$$-RDX, $$\varepsilon$$-CL-20, DAAF, FOX-7, and $$\beta$$-HMX on hydrostatic compression. Prop Explos Pyrotech 2022;47:e202100281.

70. Deschamps JR, Frisch M, Parrish D. Thermal expansion of HMX. J Chem Crystal 2011;41:966-70.

71. Eiland PF, Pepinsky R. The crystal structure of cyclotetramethylene tetranitramine. Z Krist Cryst Mater 1954;106:273-98.

72. Cady HH, Larson AC, Cromer DT. The crystal structure of $$\alpha$$-HMX and a refinement of the structure of $$\beta$$-HMX. Acta Cryst 1963;16:617-23.

73. Oganov AR, Glass CW. Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J Chem Phys 2006;124:244704.

74. Oganov AR, Lyakhov AO, Valle M. How evolutionary crystal structure prediction works - and why. Acc Chem Res 2011;44:227-37.

75. Gale JD, Raiteri P, van Duin ACT. A reactive force field for aqueous-calcium carbonate systems. Phys Chem Chem Phys 2011;13:16666-79.

76. Soler JM, Artacho E, Gale JD, et al. The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 2002;14:2745.

77. Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI. Van der Waals density functional for general geometries. Phys Rev Lett 2004;92:246401.

78. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 1996;54:11169-86.

79. Gavezzotti A, Presti LL. Building blocks of crystal engineering: a large-database study of the intermolecular approach between C-H donor groups and O, N, Cl, or F acceptors in organic crystals. Cryst Growth Des 2016;16:2952-62.

80. Guo F. ReaxFF-nn for lammps. Available from: https://github.com/fenggo/ReaxFF-nn_for_lammps. [Last accessed on 15 May 2024].

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/