REFERENCES

1. Goeppert A, Czaun M, Surya Prakash GK, Olah GA. Air as the renewable carbon source of the future: an overview of CO2 capture from the atmosphere. Energy Environ Sci 2012;5:7833-53.

2. Ding M, Flaig RW, Jiang HL, Yaghi OM. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem Soc Rev 2019;48:2783-828.

3. Zhu DD, Liu JL, Qiao SZ. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv Mater 2016;28:3423-52.

4. Fan Q, Hou P, Choi C, et al. Activation of Ni particles into single Ni–N atoms for efficient electrochemical reduction of CO2. Adv Energy Mater 2020;10:1903068.

5. Yue Y, Sun Y, Tang C, et al. Ranking the relative CO2 electrochemical reduction activity in carbon materials. Carbon 2019;154:108-14.

6. Ling C, Li Q, Du A, Wang J. Computation-aided design of single-atom catalysts for one-pot CO2 capture, activation, and conversion. ACS Appl Mater Interfaces 2018;10:36866-72.

7. Zhang X, Wu Z, Zhang X, et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat Commun 2017;8:14675.

8. Low J, Cheng B, Yu J. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Appl Surf Sci 2017;392:658-86.

9. Wang D, Huang R, Liu W, Sun D, Li Z. Fe-based MOFs for photocatalytic CO2 reduction: role of coordination unsaturated sites and dual excitation pathways. ACS Catal 2014;4:4254-60.

10. Jin S, Hao Z, Zhang K, Yan Z, Chen J. Advances and challenges for the electrochemical reduction of CO2 to CO: from fundamentals to industrialization. Angew Chem Int Ed Engl 2021;133:20795-816.

11. Zheng T, Jiang K, Wang H. Recent advances in electrochemical CO2-to-CO conversion on heterogeneous catalysts. Adv Mater 2018;30:1802066.

12. Zhou H, Zou X, Wu X, Yang X, Li J. Coordination engineering in cobalt-nitrogen-functionalized materials for CO2 reduction. J Phys Chem Lett 2019;10:6551-7.

13. Ren W, Tan X, Yang W, et al. Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew Chem Int Ed Engl 2019;58:6972-6.

14. Li H, Wang L, Dai Y, et al. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation. Nat Nanotechnol 2018;13:411-7.

15. Liang Z, Qu C, Xia D, Zou R, Xu Q. Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew Chem Int Ed Engl 2018;57:9604-33.

16. Yuan CZ, Zhan LY, Liu SJ, et al. Semi-sacrificial template synthesis of single-atom Ni sites supported on hollow carbon nanospheres for efficient and stable electrochemical CO2 reduction. Inorg Chem Front 2020;7:1719-25.

17. Han L, Song S, Liu M, et al. Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4. J Am Chem Soc 2020;142:12563-7.

18. Yang XF, Wang A, Qiao B, Li J, Liu J, Zhang T. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res 2013;46:1740-8.

19. Chen Y, Ji S, Chen C, Peng Q, Wang D, Li Y. Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2018;2:1242-64.

20. Wang Y, Mao J, Meng X, Yu L, Deng D, Bao X. Catalysis with two-dimensional materials confining single atoms: concept, design, and applications. Chem Rev 2019;119:1806-54.

21. Chen W, Pei J, He CT, et al. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew Chem Int Ed Engl 2017;129:16302-6.

22. Zhang H, An P, Zhou W, et al. Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Sci Adv 2018;4:eaao6657.

23. Fei H, Dong J, Arellano-Jiménez MJ, et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat Commun 2015;6:8668.

24. Luo Z, Ouyang Y, Zhang H, et al. Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution. Nat Commun 2018;9:2120.

25. Tian S, Deng C, Tang Y, Tang Q. Effect of adatom doping on the electrochemical performance of 1T'-MoS2 for oxygen reduction reactions. J Phys Chem C 2020;124:24899-907.

26. Tian S, Tang Q. Activating transition metal dichalcogenide monolayers as efficient electrocatalysts for the oxygen reduction reaction via single atom doping. J Mater Chem C 2021;9:6040-50.

27. Chen Y, Tian S, Tang Q. First-principles studies on electrocatalytic activity of novel two-dimensional MA2Z4 monolayers toward oxygen reduction reaction. J Phys Chem C 2021;125:22581-90.

28. Han Y, Wang YG, Chen W, et al. Hollow N-doped carbon spheres with isolated cobalt single atomic sites: superior electrocatalysts for oxygen reduction. J Am Chem Soc 2017;139:17269-72.

29. Yang HB, Hung SF, Liu S, et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat Energy 2018;3:140-7.

30. Ma M, Li F, Tang Q. Coordination environment engineering on nickel single-atom catalysts for CO2 electroreduction. Nanoscale 2021;13:19133-43.

31. Raciti D, Wang C. Recent advances in CO2 reduction electrocatalysis on copper. ACS Energy Lett 2018;3:1545-56.

32. Qing G, Ghazfar R, Jackowski ST, et al. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem Rev 2020;120:5437-516.

33. Wu T, Zhu X, Xing Z, et al. Greatly improving electrochemical N2 reduction over TiO2 nanoparticles by iron doping. Angew Chem Int Ed Engl 2019;58:18449-53.

34. Liu L, Corma A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev 2018;118:4981-5079.

35. Liu JC, Xiao H, Li J. Constructing high-loading single-atom/cluster catalysts via an electrochemical potential window strategy. J Am Chem Soc 2020;142:3375-83.

36. Hansen HA, Varley JB, Peterson AA, Nørskov JK. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. J Phys Chem Lett 2013;4:388-92.

37. Calle-Vallejo F, Loffreda D, Koper MT, Sautet P. Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers. Nat Chem 2015;7:403-10.

38. Abild-Pedersen F, Greeley J, Studt F, et al. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys Rev Lett 2007;99:016105.

39. Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH. Towards the computational design of solid catalysts. Nat Chem 2009;1:37-46.

40. Man IC, Su HY, Calle-Vallejo F, et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011;3:1159-65.

41. Yang Y, Qian Y, Li H, et al. O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Sci Adv 2020;6:eaba6586.

42. Guo X, Gu J, Lin S, Zhang S, Chen Z, Huang S. Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts. J Am Chem Soc 2020;142:5709-21.

43. Deng C, Su Y, Li F, Shen W, Chen Z, Tang Q. Understanding activity origin for the oxygen reduction reaction on bi-atom catalysts by DFT studies and machine-learning. J Mater Chem A 2020;8:24563-71.

44. Lv X, Wei W, Huang B, Dai Y, Frauenheim T. High-throughput screening of synergistic transition metal dual-atom catalysts for efficient nitrogen fixation. Nano Lett 2021;21:1871-8.

45. Li X, Zhong W, Cui P, Li J, Jiang J. Design of efficient catalysts with double transition metal atoms on C2N layer. J Phys Chem Lett 2016;7:1750-5.

46. Jiao J, Lin R, Liu S, et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat Chem 2019;11:222-8.

47. Cao N, Chen Z, Zang K, et al. Doping strain induced bi-Ti3+ pairs for efficient N2 activation and electrocatalytic fixation. Nat Commun 2019;10:2877.

48. Li X, Sun Y, Xu J, et al. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat Energy 2019;4:690-9.

49. Fu J, Dong J, Si R, et al. Synergistic effects for enhanced catalysis in a dual single-atom catalyst. ACS Catal 2021;11:1952-61.

50. Yan H, Lin Y, Wu H, et al. Bottom-up precise synthesis of stable platinum dimers on graphene. Nat Commun 2017;8:1070.

51. Zhao J, Zhao J, Li F, Chen Z. Copper dimer supported on a C2N layer as an efficient electrocatalyst for CO2 reduction reaction: a computational study. J Phys Chem C 2018;122:19712-21.

52. Hunter MA, Fischer JMTA, Yuan Q, Hankel M, Searles DJ. Evaluating the catalytic efficiency of paired, single-atom catalysts for the oxygen reduction reaction. ACS Catal 2019;9:7660-7.

53. Chen X, Berner NC, Backes C, Duesberg GS, Mcdonald AR. Functionalization of two-dimensional MoS2: on the reaction between MoS2 and organic thiols. Angewandte Chemie 2016;128:5897-902.

54. Kim IS, Sangwan VK, Jariwala D, et al. Influence of stoichiometry on the optical and electrical properties of chemical vapor deposition derived MoS2. ACS Nano 2014;8:10551-8.

55. Tsai C, Li H, Park S, et al. Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution. Nat Commun 2017;8:15113.

56. Patra TK, Zhang F, Schulman DS, et al. Defect dynamics in 2-D MoS2 probed by using machine learning, atomistic simulations, and high-resolution microscopy. ACS Nano 2018;12:8006-16.

57. Liu G, Robertson AW, Li MM, et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat Chem 2017;9:810-6.

58. Li H, Wang S, Sawada H, et al. Atomic structure and dynamics of single platinum atom interactions with monolayer MoS2. ACS Nano 2017;11:3392-403.

59. Li F, Tang Q. A di-boron pair doped MoS2 (B2@MoS2) single-layer shows superior catalytic performance for electrochemical nitrogen activation and reduction. Nanoscale 2019;11:18769-78.

60. Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 1990;92:508-17.

61. Delley B. From molecules to solids with the DMol3 approach. J Chem Phys 2000;113:7756-64.

62. Ernzerhof M, Scuseria GE. Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional. J Chem Phys 1999;110:5029-36.

63. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865-8.

64. Keith JA, Jerkiewicz G, Jacob T. Theoretical investigations of the oxygen reduction reaction on Pt(111). Chemphyschem 2010;11:2779-94.

65. Zhang P, Xiao BB, Hou XL, Zhu YF, Jiang Q. Layered SiC sheets: a potential catalyst for oxygen reduction reaction. Sci Rep 2014;4:3821.

66. Klamt A. Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J Phys Chem 1995;99:2224-35.

67. Verma AM, Honkala K, Melander MM. Computational screening of doped graphene electrodes for alkaline CO2 reduction. Front Energy Res 2021;8:606742.

68. Nørskov JK, Rossmeisl J, Logadottir A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 2004;108:17886-92.

69. Peterson AA, Nørskov JK. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J Phys Chem Lett 2012;3:251-8.

70. Shi C, Hansen HA, Lausche AC, Nørskov JK. Trends in electrochemical CO2 reduction activity for open and close-packed metal surfaces. Phys Chem Chem Phys 2014;16:4720-7.

71. Ouyang Y, Shi L, Bai X, Li Q, Wang J. Breaking scaling relations for efficient CO2 electrochemical reduction through dual-atom catalysts. Chem Sci 2020;11:1807-13.

72. Wang S, Li L, Li J, et al. High-throughput screening of nitrogen-coordinated bimetal catalysts for multielectron reduction of CO2 to CH4 with high selectivity and low limiting potential. J Phys Chem C 2021;125:7155-65.

73. Zhang YJ, Sethuraman V, Michalsky R, Peterson AA. Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts. ACS Catal 2014;4:3742-8.

74. Chang X, Wang T, Gong J. CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ Sci 2016;9:2177-96.

75. Chen S, Yuan H, Morozov SI, et al. Design of a graphene nitrene two-dimensional catalyst heterostructure providing a well-defined site accommodating one to three metals, with application to CO2 reduction electrocatalysis for the two-metal case. J Phys Chem Lett 2020;11:2541-9.

76. Breiman L. Random forests. Mach Learn 2001;45:5-32.

77. Jiang Z, Zhou W, Hu C, et al. Interlayer-confined nife dual atoms within MoS2 electrocatalyst for ultra-efficient acidic overall water splitting (Adv. Mater. 32/2023). Adv Mater 2023;35:2370227.

78. Zhao Z, Lu G. Computational screening of near-surface alloys for CO2 electroreduction. ACS Catal 2018;8:3885-94.

79. Li H, Reuter K. Active-site computational screening: role of structural and compositional diversity for the electrochemical CO2 reduction at Mo carbide catalysts. ACS Catal 2020;10:11814-21.

80. Kour G, Mao X, Du A. Computational screening of single-atom alloys TM@Ru(0001) for enhanced electrochemical nitrogen reduction reaction. J Mater Chem A 2022;10:6204-15.

81. Liu S, Xing G, Liu J. Computational screening of single-atom catalysts for direct electrochemical NH3 synthesis from NO on defective boron phosphide monolayer. Appl Surf Sci 2023;611:155764.

82. Chen Z, Zhao J, Cabrera CR, Chen Z. Computational screening of efficient single-atom catalysts based on graphitic carbon nitride (g-C3N4) for nitrogen electroreduction. Small Methods 2019;3:1800368.

83. Zhao Z, Chen Z, Lu G. Computational discovery of nickel-based catalysts for CO2 reduction to formic acid. J Phys Chem C 2017;121:20865-70.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/