REFERENCES

1. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nat Nanotechnol 2011;6:147-50.

2. Koppens FHL, Mueller T, Avouris P, Ferrari AC, Vitiello MS, Polini M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotechnol 2014;9:780-93.

3. Papageorgiou DG, Kinloch IA, Young RJ. Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci 2017;90:75-127.

4. Liu X, Ma T, Pinna N, Zhang J. Two-dimensional nanostructured materials for gas sensing. Adv Funct Mater 2017;27:1702168.

5. Khan K, Tareen AK, Aslam M, et al. Recent developments in emerging two-dimensional materials and their applications. J Mater Chem C 2020;8:387-440.

6. Yin J, Li X, Yu J, Zhang Z, Zhou J, Guo W. Generating electricity by moving a droplet of ionic liquid along graphene. Nat Nanotechnol 2014;9:378-83.

7. Liu X, Hersam MC. Interface characterization and control of 2D Materials and heterostructures. Adv Mater 2018;30:e1801586.

8. Dai Z, Lu N, Liechti KM, Huang R. Mechanics at the interfaces of 2D materials: challenges and opportunities. Curr Opin Solid State Mater Sci 2020;24:100837.

9. Aria AI, Kidambi PR, Weatherup RS, Xiao L, Williams JA, Hofmann S. Time evolution of the wettability of supported graphene under ambient air exposure. J Phys Chem C Nanomater Interfaces 2016;120:2215-24.

10. Bera B, Shahidzadeh N, Mishra H, Belyaeva LA, Schneider GF, Bonn D. Wetting of water on graphene nanopowders of different thicknesses. Appl Phys Lett 2018;112:151606.

11. Du F, Huang J, Duan H, Xiong C, Wang J. Wetting transparency of supported graphene is regulated by polarities of liquids and substrates. Appl Surf Sci 2018;454:249-55.

12. Kim D, Kim E, Park S, et al. Wettability of graphene and interfacial water structure. Chem 2021;7:1602-14.

13. Kim E, Kim D, Kwak K, Nagata Y, Bonn M, Cho M. Wettability of graphene, water contact angle, and interfacial water structure. Chem 2022;8:1187-200.

14. Ondarçuhu T, Thomas V, Nuñez M, et al. Wettability of partially suspended graphene. Sci Rep 2016;6:24237.

15. Zhang J, Jia K, Huang Y, et al. Intrinsic wettability in pristine graphene (Adv. Mater. 6/2022). Adv Mater 2022;34:e2103620.

16. Zhao Y, Wang G, Huang W, et al. Investigations on the wettability of graphene on a micron-scale hole array substrate. RSC Adv 2016;6:1999-2003.

17. Chen L, Shi G, Shen J, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 2017;550:380-3.

18. Hu S, Lozada-Hidalgo M, Wang FC, et al. Proton transport through one-atom-thick crystals. Nature 2014;516:227-30.

19. Lozada-Hidalgo M, Hu S, Marshall O, et al. Sieving hydrogen isotopes through two-dimensional crystals. Science 2016;351:68-70.

20. Joshi RK, Carbone P, Wang FC, et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 2014;343:752-4.

21. Abdolhosseinzadeh S, Zhang C(J), Schneider R, Shakoorioskooie M, Nüesch F, Heier J. A universal approach for room-temperature printing and coating of 2D materials (Adv. Mater. 4/2022). Adv Mater 2022;34:2270033.

22. Wang J, Gao W, Zhang H, Zou M, Chen Y, Zhao Y. Programmable wettability on photocontrolled graphene film. Sci Adv 2018;4:eaat7392.

23. Das S, Pandey D, Thomas J, Roy T. 2D materials: the role of graphene and other 2D materials in solar photovoltaics (Adv. Mater. 1/2019). Adv Mater 2019;31:1970006.

24. Aryal UK, Ahmadpour M, Turkovic V, Rubahn HG, Di Carlo A, Madsen M. 2D materials for organic and perovskite photovoltaics. Nano Energy 2022;94:106833.

25. Zhou KG, Vasu KS, Cherian CT, et al. Electrically controlled water permeation through graphene oxide membranes. Nature 2018;559:236-40.

26. Zhu Y, Murali S, Stoller MD, et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011;332:1537-41.

27. Liu Z, Liu C, Chen Z, et al. Recent advances in two-dimensional materials for hydrovoltaic energy technology. Exploration 2023;3:20220061.

28. Shih CJ, Wang QH, Lin S, et al. Erratum: breakdown in the wetting transparency of graphene [Phys. Rev. Lett. 109, 176101 (2012)]. Phys Rev Lett 2012;115:049901.

29. Parobek D, Liu H. Wettability of graphene. 2D Mater 2015;2:032001.

30. Leenaerts O, Partoens B, Peeters FM. Water on graphene: hydrophobicity and dipole moment using density functional theory. Phys Rev B 2009;79:235440.

31. Rafiee J, Mi X, Gullapalli H, et al. Wetting transparency of graphene. Nat Mater 2012;11:217-22.

32. Raj R, Maroo SC, Wang EN. Wettability of graphene. Nano Lett 2013;13:1509-15.

33. Shih CJ, Strano MS, Blankschtein D. Wetting translucency of graphene. Nat Mater 2013;12:866-9.

34. Zhao G, Li X, Huang M, et al. The physics and chemistry of graphene-on-surfaces. Chem Soc Rev 2017;46:4417-49.

35. Snapp P, Kim JM, Cho C, Leem J, Haque MF, Nam S. Interaction of 2D materials with liquids: wettability, electrochemical properties, friction, and emerging directions. NPG Asia Mater 2020;12:22.

36. Belyaeva LA, Schneider GF. Wettability of graphene. Surf Sci Rep 2020;75:100482.

37. Xia K, Jian M, Zhang W, Zhang Y. Visualization of graphene on various substrates based on water wetting behavior. Adv Mater Interfaces 2016;3:1500674.

38. Zhao J, Zhu J, Cao R, et al. Liquefaction of water on the surface of anisotropic two-dimensional atomic layered black phosphorus. Nat Commun 2019;10:4062.

39. Schulman RD, Ledesma-Alonso R, Salez T, Raphaël E, Dalnoki-Veress K. Liquid droplets act as “compass needles” for the stresses in a deformable membrane. Phys Rev Lett 2017;118:198002.

40. Sanchez DA, Dai Z, Lu N. 2D material bubbles: fabrication, characterization, and applications. Trends Chem 2021;3:204-17.

41. Rao Y, Qiao S, Dai Z, Lu N. Elastic wetting: Substrate-supported droplets confined by soft elastic membranes. J Mech Phys Solids 2021;151:104399.

42. Rao Y, Kim E, Dai Z, He J, Li Y, Lu N. Size-dependent shape characteristics of 2D crystal blisters. J Mech Phys Solids 2023;175:105286.

43. Dai Z, Rao Y, Lu N. Two-dimensional crystals on adhesive substrates subjected to uniform transverse pressure. Int J Solids Struct 2022;257:111829.

44. Ma J, Kim JM, Hoque MJ, et al. Role of thin film adhesion on capillary peeling. Nano Lett 2021;21:9983-9.

45. Liu H, Thi QH, Man P, et al. Controlled adhesion of ice-toward ultraclean 2D materials (Adv. Mater. 14/2023). Adv Mater 2023;35:2370102.

46. Cai J, Chen H, Ke Y, Deng S. A capillary-force-assisted transfer for monolayer transition-metal-dichalcogenide crystals with high utilization. ACS Nano 2022;16:15016-25.

47. Zhang Y, Yin M, Baek Y, et al. Capillary transfer of soft films. Proc Natl Acad Sci U S A 2020;117:5210-6.

48. Gurarslan A, Yu Y, Su L, et al. Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS Nano 2014;8:11522-8.

49. Zhao H, Wang B, Liu F, et al. Fluidic flow assisted deterministic folding of van der Waals materials. Adv Funct Mater 2020;30:1908691.

50. Ferrari GA, de Oliveira AB, Silvestre I, et al. Apparent softening of wet graphene membranes on a microfluidic platform. ACS Nano 2018;12:4312-20.

51. Chen E, Dai Z. Axisymmetric peeling of thin elastic films: a perturbation solution. J Appl Mech 2023;90:101011.

52. Cao P, Bai P, Omrani AA, et al. Preventing thin film dewetting via graphene capping. Adv Mater 2017;29:1701536.

53. Ares P, Cea T, Holwill M, et al. Piezoelectric materials: piezoelectricity in monolayer hexagonal boron nitride (Adv. Mater. 1/2020). Adv Mater 2020;32:e1905504.

54. Ares P, Wang YB, Woods CR, et al. Van der Waals interaction affects wrinkle formation in two-dimensional materials. Proc Natl Acad Sci U S A 2021:118-e2025870118.

55. Dai Z, Vella D. Droplets on lubricated surfaces: the slow dynamics of skirt formation. Phys Rev Fluids 2022;7:054003.

56. Hou Y, Dai Z, Zhang S, et al. Elastocapillary cleaning of twisted bilayer graphene interfaces. Nat Commun 2021;12:5069.

57. Ross FM. Opportunities and challenges in liquid cell electron microscopy. Science 2015;350:aaa9886.

58. Ghodsi SM, Megaridis CM, Shahbazian-yassar R, Shokuhfar T. Advances in graphene-based liquid cell electron microscopy: working principles, opportunities, and challenges. Small Methods 2019;3:1900026.

59. Zhang J, Lin L, Sun L, et al. Clean transfer of large graphene single crystals for high-intactness suspended membranes and liquid cells. Adv Mater 2017;29:1700639.

60. Yuk JM, Park J, Ercius P, et al. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 2012;336:61-4.

61. Park J, Koo K, Noh N, et al. Graphene liquid cell electron microscopy: progress, applications, and perspectives. ACS Nano 2021;15:288-308.

62. Park JB, Shin D, Kang S, Cho SP, Hong BH. Distortion in two-dimensional shapes of merging nanobubbles: evidence for anisotropic gas flow mechanism. Langmuir 2016;32:11303-8.

63. Shin D, Park JB, Kim YJ, et al. Growth dynamics and gas transport mechanism of nanobubbles in graphene liquid cells. Nat Commun 2015;6:6068.

64. Yoshida H, Kaiser V, Rotenberg B, Bocquet L. Dripplons as localized and superfast ripples of water confined between graphene sheets. Nat Commun 2018;9:1496.

65. Sun JS, Jiang JW, Park HS, Zhang S. Self-cleaning by harnessing wrinkles in two-dimensional layered crystals. Nanoscale 2017;10:312-8.

66. Sanchez DA, Dai Z, Wang P, et al. Mechanics of spontaneously formed nanoblisters trapped by transferred 2D crystals. Proc Natl Acad Sci U S A 2018;115:7884-9.

67. Algara-Siller G, Lehtinen O, Wang FC, et al. Square ice in graphene nanocapillaries. Nature 2015;519:443-5.

68. Novoselov KS, Mishchenko A, Carvalho A, Castro Neto AH. 2D materials and van der Waals heterostructures. Science 2016;353:aac9439.

69. Wang S, Zhang Y, Abidi N, Cabrales L. Wettability and surface free energy of graphene films. Langmuir 2009;25:11078-81.

70. Prydatko AV, Belyaeva LA, Jiang L, Lima LMC, Schneider GF. Contact angle measurement of free-standing square-millimeter single-layer graphene. Nat Commun 2018;9:4185.

71. Wang H, Orejon D, Song D, et al. Non-wetting of condensation-induced droplets on smooth monolayer suspended graphene with contact angle approaching 180 degrees. Commun Mater 2022;3:75.

72. Bico J, Reyssat É, Roman B. Elastocapillarity: when surface tension deforms elastic solids. Annu Rev Fluid Mech 2018;50:629-59.

73. Lin L, Zhang J, Su H, et al. Towards super-clean graphene. Nat Commun 2019;10:1912.

74. Choi J, Mun J, Wang MC, Ashraf A, Kang SW, Nam SW. Hierarchical, dual-scale structures of atomically thin MoS2 for tunable wetting. Nano Lett 2017;17:1756-61.

75. Gaire B, Singla S, Dhinojwala A. Screening of hydrogen bonding interactions by a single layer graphene†. Nanoscale 2021;13:8098-106.

76. Li Z, Wang Y, Kozbial A, et al. Effect of airborne contaminants on the wettability of supported graphene and graphite. Nat Mater 2013;12:925-31.

77. Kim GT, Gim SJ, Cho SM, Koratkar N, Oh IK. Wetting-transparent graphene films for hydrophobic water-harvesting surfaces. Adv Mater 2014;26:5166-72.

78. Shin YJ, Wang Y, Huang H, et al. Surface-energy engineering of graphene. Langmuir 2010;26:3798-802.

79. Lai CY, Tang TC, Amadei CA, et al. A nanoscopic approach to studying evolution in graphene wettability. Carbon 2014;80:784-92.

80. Kozbial A, Li Z, Sun J, et al. Understanding the intrinsic water wettability of graphite. Carbon 2014;74:218-25.

81. Gurarslan A, Jiao S, Li TD, et al. Van der Waals force isolation of monolayer MoS2. Adv Mater 2016;28:10055-60.

82. Chow PK, Singh E, Viana BC, et al. Wetting of mono and few-layered WS2 and MoS2 films supported on Si/SiO2 substrates. ACS Nano 2015;9:3023-31.

83. Singh B, Ali N, Chakravorty A, Sulania I, Ghosh S, Kabiraj D. Wetting behavior of MoS2 thin films. Mater Res Express 2019;6:096424.

84. Li S, Liu K, Klimeš J, Chen J. Understanding the wetting of transition metal dichalcogenides from an ab initio perspective. Phys Rev Res 2023;5:023018.

85. Rodrigues SP, Evaristo M, Carvalho S, Cavaleiro A. Fluorine-carbon doping of WS-based coatings deposited by reactive magnetron sputtering for low friction purposes. Appl Surf Sci 2018;445:575-85.

86. Liu X, Zhang Z, Guo W. van der Waals screening by graphenelike monolayers. Phys Rev B 2018;97:241411.

87. Wagemann E, Wang Y, Das S, Mitra SK. On the wetting translucency of hexagonal boron nitride†. Phys Chem Chem Phys 2020;22:7710-8.

88. Wagemann E, Wang Y, Das S, Mitra SK. Wettability of nanostructured hexagonal boron nitride surfaces: molecular dynamics insights on the effect of wetting anisotropy. Phys Chem Chem Phys 2020;22:2488-97.

89. Li X, Qiu H, Liu X, Yin J, Guo W. Wettability of supported monolayer hexagonal boron nitride in air. Adv Funct Mater 2017;27:1603181.

90. Chen X, Yang Z, Feng S, et al. How universal is the wetting aging in 2D materials. Nano Lett 2020;20:5670-7.

91. Wang FC, Wu HA. Pinning and depinning mechanism of the contact line during evaporation of nano-droplets sessile on textured surfaces. Soft Matter 2013;9:5703-9.

92. Wang L, Lu N. Conformability of a thin elastic membrane laminated on a soft substrate with slightly wavy surface. J Appl Mech 2016;83:041007.

93. Gao W, Huang R. Effect of surface roughness on adhesion of graphene membranes. J Phys D Appl Phys 2011;44:452001.

94. Wagner TJW, Vella D. The sensitivity of graphene “snap-through” to substrate geometry. Appl Phys Lett 2012;100:233111.

95. Liu S, He J, Rao Y, et al. Conformability of flexible sheets on spherical surfaces. Sci Adv 2023;9:eadf2709.

96. Box F, Domino L, Corvo TO, et al. Delamination from an adhesive sphere: Curvature-induced dewetting versus buckling. Proc Natl Acad Sci U S A 2023;120:e2212290120.

97. Du F, Huang J, Duan H, Xiong C, Wang J. Surface stress of graphene layers supported on soft substrate. Sci Rep 2016;6:25653.

98. Fang Z, Dai Z, Wang B, et al. Pull-to-peel of two-dimensional materials for the simultaneous determination of elasticity and adhesion. Nano Lett 2023;23:742-9.

99. Dai Z, Hou Y, Sanchez DA, et al. Interface-governed deformation of nanobubbles and nanotents formed by two-dimensional materials. Phys Rev Lett 2018;121:266101.

100. Dai Z, Liu L, Zhang Z. 2D materials: strain engineering of 2D materials: issues and opportunities at the interface (Adv. Mater. 45/2019). Adv Mater 2019;31:1970322.

101. Dai Z, Lu N. Poking and bulging of suspended thin sheets: slippage, instabilities, and metrology. J Mech Phys Solids 2021;149:104320.

102. Dai Z, Sanchez DA, Brennan CJ, Lu N. Radial buckle delamination around 2D material tents. J Mech Phys Solids 2020;137:103843.

103. Deng S, Berry V. Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Mater Today 2016;19:197-212.

104. Zang J, Ryu S, Pugno N, et al. Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat Mater 2013;12:321-5.

105. Ashraf A, Wu Y, Wang MC, et al. Doping-induced tunable wettability and adhesion of graphene. Nano Lett 2016;16:4708-12.

106. Hong G, Han Y, Schutzius TM, et al. On the mechanism of hydrophilicity of graphene. Nano Lett 2016;16:4447-53.

107. van Engers CD, Cousens NEA, Babenko V, et al. Direct measurement of the surface energy of graphene. Nano Lett 2017;17:3815-21.

108. Johnson KL, Greenwood JA. An adhesion map for the contact of elastic spheres. J Colloid Interf Sci 1997;192:326-33.

109. Tiwari A, Wang J, Persson BNJ. Adhesion paradox: why adhesion is usually not observed for macroscopic solids. Phys Rev E 2020;102:042803.

110. Tsoi S, Dev P, Friedman AL, et al. van der Waals screening by single-layer graphene and molybdenum disulfide. ACS Nano 2014;8:12410-7.

111. Suk JW, Na SR, Stromberg RJ, et al. Probing the adhesion interactions of graphene on silicon oxide by nanoindentation. Carbon 2016;103:63-72.

112. Li B, Yin J, Liu X, et al. Probing van der Waals interactions at two-dimensional heterointerfaces. Nat Nanotechnol 2019;14:567-72.

113. Lambert AG, Davies PB, Neivandt DJ. Implementing the theory of sum frequency generation vibrational spectroscopy: a tutorial review. Appl Spectrosc Rev 2005;40:103-45.

114. Morita A, Ishiyama T. Recent progress in theoretical analysis of vibrational sum frequency generation spectroscopy. Phys Chem Chem Phys 2008;10:5801-16.

115. Nagata Y, Mukamel S. Vibrational sum-frequency generation spectroscopy at the water/lipid interface: molecular dynamics simulation study. J Am Chem Soc 2010;132:6434-42.

116. Singla S, Anim-Danso E, Islam AE, et al. Insight on structure of water and ice next to graphene using surface-sensitive spectroscopy. ACS Nano 2017;11:4899-906.

117. Dreier LB, Liu Z, Narita A, et al. Surface-specific spectroscopy of water at a potentiostatically controlled supported graphene monolayer. J Phys Chem C 2019;123:24031-8.

118. Castro FJ, Meyer G. Thermal desorption spectroscopy (TDS) method for hydrogen desorption characterization (I): theoretical aspects. J Alloys Compd 2002;330-2:59-63.

119. von Zeppelin F, Haluška M, Hirscher M. Thermal desorption spectroscopy as a quantitative tool to determine the hydrogen content in solids. Thermochim Acta 2003;404:251-8.

120. Belyaeva LA, Tang C, Juurlink L, Schneider GF. Macroscopic and microscopic wettability of graphene. Langmuir 2021;37:4049-55.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/