REFERENCES

1. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF. Combining theory and experiment in electrocatalysis: insights into materials design. Science 2017;355:eaad4998.

2. Brockway PE, Owen A, Brand-correa LI, Hardt L. Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources. Nat Energy 2019;4:612-21.

3. Reymond JL. The chemical space project. Acc Chem Res 2015;48:722-30.

4. Walsh A. The quest for new functionality. Nat Chem 2015;7:274-5.

5. Agrawal A, Choudhary A. Perspective: materials informatics and big data: realization of the “fourth paradigm” of science in materials science. APL Mater 2016;4:053208.

6. Rajagopal AK, Callaway J. Inhomogeneous electron gas. Phys Rev B 1973;7:1912-9.

7. Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev 1965;140:A1133-8.

8. Abraham FF. Computational statistical mechanics methodology, applications and supercomputing. Adv Phys 1986;35:1-111.

9. Yao N, Chen X, Fu ZH, Zhang Q. Applying classical, Ab Initio, and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries. Chem Rev 2022;122:10970-1021.

10. Van der Ven A, Deng Z, Banerjee S, Ong SP. Rechargeable alkali-ion battery materials: theory and computation. Chem Rev 2020;120:6977-7019.

11. Li J, Lim K, Yang H, et al. AI applications through the whole life cycle of material discovery. Matter 2020;3:393-432.

12. Feldman K, Agnew SR. The materials genome initiative at the national science foundation: a status report after the first year of funded research. JOM 2014;66:336-44.

13. Tolle KM, Tansley DSW, Hey AJG. The fourth paradigm: data-intensive scientific discovery [point of view]. Proc IEEE 2011;99:1334-7.

14. Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science 2015;349:255-60.

15. Ghahramani Z. Probabilistic machine learning and artificial intelligence. Nature 2015;521:452-9.

16. Muratov EN, Bajorath J, Sheridan RP, et al. Correction: QSAR without borders. Chem Soc Rev 2020;49:3525-64.

17. Lyngby P, Thygesen KS. Data-driven discovery of 2D materials by deep generative models. npj Comput Mater 2022;8:232.

18. Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A. Machine learning for molecular and materials science. Nature 2018;559:547-55.

19. Steinmann SN, Wang Q, Seh ZW. How machine learning can accelerate electrocatalysis discovery and optimization. Mater Horiz 2023;10:393-406.

20. Chen L, Zhang X, Chen A, Yao S, Hu X, Zhou Z. Targeted design of advanced electrocatalysts by machine learning. Chin J Catal 2022;43:11-32.

21. Mai H, Le TC, Chen D, Winkler DA, Caruso RA. Machine learning for electrocatalyst and photocatalyst design and discovery. Chem Rev 2022;122:13478-515.

22. Zhang X, Tian Y, Chen L, Hu X, Zhou Z. Machine learning: a new paradigm in computational electrocatalysis. J Phys Chem Lett 2022;13:7920-30.

23. Samuel AL. Some studies in machine learning using the game of checkers. IBM J Res Dev 2000;44:206-26.

24. Mitchell T, Buchanan B, Dejong G, Dietterich T, Rosenbloom P, Waibel A. Machine learning. Annu Rev Comput Sci 1990;4:417-33.

25. Keith JA, Vassilev-Galindo V, Cheng B, et al. Combining machine learning and computational chemistry for predictive insights into chemical systems. Chem Rev 2021;121:9816-72.

26. Luckenbach R. The beilstein handbook of organic chemistry: the first hundred years. J Chem Inf Comput Sci 1981;21:82-3.

27. Xu Y. Accomplishment and challenge of materials database toward big data. Chin Phys B 2018;27:118901.

28. Wei Z, He Q, Zhao Y. Machine learning for battery research. J Power Sources 2022;549:232125.

29. Tshitoyan V, Dagdelen J, Weston L, et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 2019;571:95-8.

30. Kim E, Huang K, Saunders A, Mccallum A, Ceder G, Olivetti E. Materials synthesis insights from scientific literature via text extraction and machine learning. Chem Mater 2017;29:9436-44.

31. Coley CW, Green WH, Jensen KF. Machine learning in computer-aided synthesis planning. Acc Chem Res 2018;51:1281-9.

32. Raccuglia P, Elbert KC, Adler PDF, et al. Machine-learning-assisted materials discovery using failed experiments. Nature 2016;533:73-6.

33. Rahm E, Do HH. Data cleaning: problems and current approaches. IEEE Data Eng Bull 2000;23:3-13. Available from: https://www.betterevaluation.org/sites/default/files/data_cleaning.pdf. [Last accessed on 29 Aug 2023]

34. Artrith N, Butler KT, Coudert FX, et al. Best practices in machine learning for chemistry. Nat Chem 2021;13:505-8.

35. Young D, Martin T, Venkatapathy R, Harten P. Are the chemical structures in your QSAR correct? QSAR Comb Sci 2008;27:1337-45.

36. Chu X, Ilyas IF, Krishnan S, Wang J. Data cleaning: overview and emerging challenges. Proceedings of the 2016 International Conference on Management of Data. ACM; 2016. p. 2201-6.

37. Qin SJ, Chiang LH. Advances and opportunities in machine learning for process data analytics. Comput Chem Eng 2019;126:465-73.

38. Ndung’u RN. Data preparation for machine learning modelling. Int J Comput Appl Technol Res 2022;11:231-5.

39. Hautamaki V, Karkkainen I, Franti P. Outlier detection using k-nearest neighbour graph. In: Proceedings of the 17th International Conference on Pattern Recognition, 2004; 2004 Aug 26; Cambridge, UK. IEEE; 2004. p. 430-3.

40. Muller E, Assent I, Steinhausen U, Seidl T. OutRank: ranking outliers in high dimensional data. In: 2008 IEEE 24th International Conference on Data Engineering Workshop; 2008 Apr 07-12; Cancun, Mexico. IEEE; 2008. p. 600-3.

41. Do K, Tran T, Phung D, Venkatesh S. Outlier detection on mixed-type data: an energy-based approach. In: Li J, Li X, Wang S, Li J, Sheng Q, editors. Advanced Data Mining and Applications. Cham: Springer; 2016. p. 111-25.

42. Tang B, He H. A local density-based approach for outlier detection. Neurocomputing 2017;241:171-80.

43. Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Francis B, David B, editors. Proceedings of the 32nd International Conference on Machine Learning. PMLR; 2015. p. 448-56. Available from: https://proceedings.mlr.press/v37/ioffe15.html. [Last accessed on 29 Aug 2023]

44. Xu Y, Goodacre R. On Splitting Training and validation set: a comparative study of cross-validation, bootstrap and systematic sampling for estimating the generalization performance of supervised learning. J Anal Test 2018;2:249-62.

45. Joseph VR, Vakayil A. SPlit: an optimal method for data splitting. Technometrics 2022;64:166-76.

46. Himanen L, Jäger MOJ, Morooka EV, et al. DScribe: library of descriptors for machine learning in materials science. Comput Phys Commun 2020;247:106949.

47. Isayev O, Oses C, Toher C, Gossett E, Curtarolo S, Tropsha A. Universal fragment descriptors for predicting properties of inorganic crystals. Nat Commun 2017;8:15679.

48. Rupp M, Tkatchenko A, Müller KR, von Lilienfeld OA. Fast and accurate modeling of molecular atomization energies with machine learning. Phys Rev Lett 2012;108:058301.

49. Carhart RE, Smith DH, Venkataraghavan R. Atom pairs as molecular features in structure-activity studies: definition and applications. J Chem Inf Comput Sci 1985;25:64-73.

50. Li S, Liu Y, Chen D, Jiang Y, Nie Z, Pan F. Encoding the atomic structure for machine learning in materials science. WIREs Comput Mol Sci 2022;12:e1558.

51. Mao J, Jain AK. Artificial neural networks for feature extraction and multivariate data projection. IEEE Trans Neural Netw 1995;6:296-317.

52. Schleider L, Pasiliao EL, Qiang Z, Zheng QP. A study of feature representation via neural network feature extraction and weighted distance for clustering. J Comb Optim 2022;44:3083-105.

53. Xie T, Grossman JC. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys Rev Lett 2018;120:145301.

54. Chen C, Ye W, Zuo Y, Zheng C, Ong SP. Graph networks as a universal machine learning framework for molecules and crystals. Chem Mater 2019;31:3564-72.

55. Louis SY, Zhao Y, Nasiri A, et al. Graph convolutional neural networks with global attention for improved materials property prediction. Phys Chem Chem Phys 2020;22:18141-8.

56. Choudhary K, Decost B. Atomistic line graph neural network for improved materials property predictions. npj Comput Mater 2021;7:185.

57. Chen C, Zuo Y, Ye W, Li X, Deng Z, Ong SP. A critical review of machine learning of energy materials. Adv Energy Mater 2020;10:1903242.

58. Bellman RE. Adaptive control processes: a guided tour. Princeton University Press; 1961.

59. Kim B, Lee S, Kim J. Inverse design of porous materials using artificial neural networks. Sci Adv 2020;6:eaax9324.

60. Back S, Yoon J, Tian N, Zhong W, Tran K, Ulissi ZW. Convolutional neural network of atomic surface structures to predict binding energies for high-throughput screening of catalysts. J Phys Chem Lett 2019;10:4401-8.

61. Timoshenko J, Frenkel AI. “Inverting” X-ray absorption spectra of catalysts by machine learning in search for activity descriptors. ACS Catal 2019;9:10192-211.

62. Li Z, Achenie LEK, Xin H. An adaptive machine learning strategy for accelerating discovery of perovskite electrocatalysts. ACS Catal 2020;10:4377-84.

63. Sanchez-Lengeling B, Aspuru-Guzik A. Inverse molecular design using machine learning: generative models for matter engineering. Science 2018;361:360-5.

64. Song Y, Siriwardane EMD, Zhao Y, Hu J. Computational discovery of new 2D materials using deep learning generative models. ACS Appl Mater Interfaces 2021;13:53303-13.

65. Zafari M, Kumar D, Umer M, Kim KS. Machine learning-based high throughput screening for nitrogen fixation on boron-doped single atom catalysts†. J Mater Chem A 2020;8:5209-16.

66. Davies DW, Butler KT, Walsh A. Data-driven discovery of photoactive quaternary oxides using first-principles machine learning. Chem Mater 2019;31:7221-30.

67. Stuke A, Todorović M, Rupp M, et al. Chemical diversity in molecular orbital energy predictions with kernel ridge regression. J Chem Phys 2019;150:204121.

68. Wexler RB, Martirez JMP, Rappe AM. Chemical pressure-driven enhancement of the hydrogen evolving activity of Ni2P from nonmetal surface doping interpreted via machine learning. J Am Chem Soc 2018;140:4678-83.

69. Panapitiya G, Avendaño-Franco G, Ren P, Wen X, Li Y, Lewis JP. Machine-learning prediction of CO adsorption in thiolated, Ag-alloyed Au nanoclusters. J Am Chem Soc 2018;140:17508-14.

70. Baghban A, Habibzadeh S, Zokaee Ashtiani F. Bandgaps of noble and transition metal/ZIF-8 electro/catalysts: a computational study†. RSC Adv 2020;10:22929-38.

71. Mageed AK. Modeling photocatalytic hydrogen production from ethanol over copper oxide nanoparticles: a comparative analysis of various machine learning techniques. Biomass Conv Bioref 2023;13:3319-27.

72. Ouyang R, Curtarolo S, Ahmetcik E, Scheffler M, Ghiringhelli LM. SISSO: a compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Phys Rev Mater 2018;2:083802.

73. Smith-miles KA. Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput Surv 2009;41:1-25.

74. Cohen-Shapira N, Rokach L. TRIO: task-agnostic dataset representation optimized for automatic algorithm selection. In: 2021 IEEE International Conference on Data Mining (ICDM); 2021 Dec 07-10; Auckland, New Zealand. IEEE; 2021. p. 81-90.

75. Shahoud S, Winter M, Khalloof H, Duepmeier C, Hagenmeyer V. An extended meta learning approach for automating model selection in big data environments using microservice and container virtualizationz technologies. Int Thin 2021;16:100432.

76. Dyrmishi S, Elshawi R, Sakr S. A decision support framework for autoML systems: a meta-learning approach. In: 2019 International Conference on Data Mining Workshops (ICDMW); 2019 Nov 08-11; Beijing, China. IEEE; 2019. p. 97-106.

77. Maher M, Sakr S. SmartML: a meta learning-based framework for automated selection and hyperparameter tuning for machine learning algorithms. Available from: https://openproceedings.org/2019/conf/edbt/EDBT19_paper_235.pdf.[Last accessed on 18 Oct 2023]

78. Dias LV, Miranda PBC, Nascimento ACA, Cordeiro FR, Mello RF, Prudêncio RBC. ImageDataset2Vec: an image dataset embedding for algorithm selection. Expert Syst Appl 2021;180:115053.

79. Chale M, Bastian ND, Weir J. Algorithm selection framework for cyber attack detection. In: Proceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning. 2020. p. 37-42.

80. Elrahman AA, El Helw M, Elshawi R, Sakr S. D-SmartML: a distributed automated machine learning framework. In: 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS); 2020 Nov 29 - Dec 01; Singapore. IEEE; 2020. p. 1215-8.

81. Ma J, Fong SH, Luo Y, et al. Few-shot learning creates predictive models of drug response that translate from high-throughput screens to individual patients. Nat Cancer 2021;2:233-44.

82. Olier I, Sadawi N, Bickerton GR, et al. Meta-QSAR: a large-scale application of meta-learning to drug design and discovery. Mach Learn 2018;107:285-311.

83. Sun Y, DeJaco RF, Li Z, et al. Fingerprinting diverse nanoporous materials for optimal hydrogen storage conditions using meta-learning. Sci Adv 2021;7:eabg3983.

84. Raschka S. Model evaluation, model selection, and algorithm selection in machine learning. arXiv. [Preprint.] November 11, 2020 [accessed 2023 August 29]. Available from: https://arxiv.org/abs/1811.12808.

85. Chicco D, Warrens MJ, Jurman G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput Sci 2021;7:e623.

86. Hossin M, Sulaiman MN. A review on evaluation metrics for data classification evaluations. Intl J Data Min Knowl Manag Process 2015;5:1.

87. Dener M, Al S, Orman A. STLGBM-DDS: an efficient data balanced DoS detection system for wireless sensor networks on big data environment. IEEE Access 2022;10:92931-45.

88. Che M. Nobel prize in chemistry 1912 to sabatier: organic chemistry or catalysis? Catalysis Today 2013;218-19:162-71.

89. Logadottir A, Rod TH, Nørskov JK, Hammer B, Dahl S, Jacobsen CJH. The brønsted-evans-polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts. J Catal 2001;197:229-31.

90. Nørskov JK, Bligaard T, Logadottir A, et al. Universality in heterogeneous catalysis. J Catal 2002;209:275-8.

91. Mao Y, Chen J, Wang H, Hu P. Catalyst screening: refinement of the origin of the volcano curve and its implication in heterogeneous catalysis. Chin J Catal 2015;36:1596-605.

92. Zhong M, Tran K, Min Y, et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 2020;581:178-83.

93. Jain A, Ong SP, Hautier G, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater 2013;1:011002.

94. Liu X, Xiao J, Peng H, Hong X, Chan K, Nørskov JK. Understanding trends in electrochemical carbon dioxide reduction rates. Nat Commun 2017;8:15438.

95. Park JW, Choi W, Noh J, et al. Bimetallic gold-silver nanostructures drive low overpotentials for electrochemical carbon dioxide reduction. ACS Appl Mater Interfaces 2022;14:6604-14.

96. Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 2004;6:299-303.

97. Cantor B, Chang ITH, Knight P, Vincent AJB. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A 2004;375-7:213-8.

98. Mori K, Hashimoto N, Kamiuchi N, Yoshida H, Kobayashi H, Yamashita H. Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO2 hydrogenation. Nat Commun 2021;12:3884.

99. Wang D, Chen Z, Huang YC, et al. Tailoring lattice strain in ultra-fine high-entropy alloys for active and stable methanol oxidation. Sci Chin Mater 2021;64:2454-66.

100. Li H, Han Y, Zhao H, et al. Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Nat Commun 2020;11:5437.

101. Chen ZW, Chen L, Gariepy Z, Yao X, Singh CV. High-throughput and machine-learning accelerated design of high entropy alloy catalysts. Trends Chem 2022;4:577-9.

102. Batchelor TA, Pedersen JK, Winther SH, Castelli IE, Jacobsen KW, Rossmeisl J. High-entropy alloys as a discovery platform for electrocatalysis. Joule 2019;3:834-45.

103. Pedersen JK, Batchelor TAA, Bagger A, Rossmeisl J. High-entropy alloys as catalysts for the CO2 and CO reduction reactions. ACS Catal 2020;10:2169-76.

104. Sun M, Huang B. Flexible modulations on selectivity of syngas formation via CO2 reduction on atomic catalysts. Nano Energy 2022;99:107382.

105. Wang X, Xiao B, Li Y, et al. First-principles based machine learning study of oxygen evolution reactions of perovskite oxides using a surface center-environment feature model. Appl Surf Sci 2020;531:147323.

106. Faber F, Lindmaa A, von Lilienfeld OA, Armiento R. Crystal structure representations for machine learning models of formation energies. Int J Quantum Chem 2015;115:1094-101.

107. Seko A, Hayashi H, Nakayama K, Takahashi A, Tanaka I. Representation of compounds for machine-learning prediction of physical properties. Phys Rev B 2017;95:144110.

108. Schmidt J, Shi J, Borlido P, Chen L, Botti S, Marques MAL. Predicting the thermodynamic stability of solids combining density functional theory and machine learning. Chem Mater 2017;29:5090-103.

109. Ward L, Liu R, Krishna A, et al. Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations. Phys Rev B 2017;96:024104.

110. Henkelman G, Uberuaga BP, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Physs 2000;113:9901-4.

111. Li H, Jiao Y, Davey K, Qiao SZ. Data-driven machine learning for understanding surface structures of heterogeneous catalysts. Angew Chem Int Ed Engl 2023;62:e202216383.

112. Kolsbjerg EL, Peterson AA, Hammer B. Neural-network-enhanced evolutionary algorithm applied to supported metal nanoparticles. Phys Rev B 2018;97:195424.

113. Yoon J, Cao Z, Raju RK, et al. Deep reinforcement learning for predicting kinetic pathways to surface reconstruction in a ternary alloy. Mach Learn Sci Technol 2021;2:045018.

114. Ulissi ZW, Singh AR, Tsai C, Nørskov JK. Automated discovery and construction of surface phase diagrams using machine learning. J Phys Chem Lett 2016;7:3931-5.

115. Vulcu A, Radu T, Porav AS, Berghian-grosan C. Low-platinum catalyst based on sulfur doped graphene for methanol oxidation in alkaline media. Mater Today Energy 2021;19:100588.

116. Thanikaivelan P, Subramanian V, Raghava Rao J, Nair BU. Application of quantum chemical descriptor in quantitative structure activity and structure property relationship. Chem Phys Lett 2000;323:59-70.

117. Dearden JC, Cronin MTD, Kaiser KLE. How not to develop a quantitative structure-activity or structure-property relationship (QSAR/QSPR). SAR QSAR Environ Res 2009;20:241-66.

118. Wu W, Xu H, Wang Z, et al. PINK1-parkin-mediated mitophagy protects mitochondrial integrity and prevents metabolic stress-induced endothelial injury. PLoS One 2015;10:e0132499.

119. Safder U, Nam K, Kim D, Shahlaei M, Yoo C. Quantitative structure-property relationship (QSPR) models for predicting the physicochemical properties of polychlorinated biphenyls (PCBs) using deep belief network. Ecotoxicol Environ Saf 2018;162:17-28.

120. Parker AJ, Opletal G, Barnard AS. Classification of platinum nanoparticle catalysts using machine learning. J Appl Phys 2020;128:014301.

121. Esterhuizen JA, Goldsmith BR, Linic S. Theory-guided machine learning finds geometric structure-property relationships for chemisorption on subsurface alloys. Chem 2020;6:3100-17.

122. Ebikade EO, Wang Y, Samulewicz N, Hasa B, Vlachos D. Active learning-driven quantitative synthesis-structure-property relations for improving performance and revealing active sites of nitrogen-doped carbon for the hydrogen evolution reaction†. React Chem Eng 2020;5:2134-47.

123. Wang B, Zhang F. Main descriptors to correlate structures with the performances of electrocatalysts. Angew Chem Int Ed Engl 2022;61:e202111026.

124. Ghiringhelli LM, Vybiral J, Levchenko SV, Draxl C, Scheffler M. Big data of materials science: critical role of the descriptor. Phys Rev Lett 2015;114:105503.

125. De S, Bartók AP, Csányi G, Ceriotti M. Comparing molecules and solids across structural and alchemical space†. Phys Chem Chem Phys 2016;18:13754-69.

126. Hinuma Y, Mine S, Toyao T, Kamachi T, Shimizu KI. Factors determining surface oxygen vacancy formation energy in ternary spinel structure oxides with zinc†. Phys Chem Chem Phys 2021;23:23768-77.

127. Liu X, Zhang Y, Wang W, et al. Transition metal and N doping on AlP monolayers for bifunctional oxygen electrocatalysts: density functional theory study assisted by machine learning description. ACS Appl Mater Interfaces 2022;14:1249-59.

128. Liu X, Liu T, Xiao W, et al. Strain engineering in single-atom catalysts: GaPS4 for bifunctional oxygen reduction and evolution†. Inorg Chem Front 2022;9:4272-80.

129. Jäger MOJ, Morooka EV, Federici Canova F, Himanen L, Foster AS. Machine learning hydrogen adsorption on nanoclusters through structural descriptors. npj Comput Mater 2018;4:37.

130. Weng B, Song Z, Zhu R, et al. Simple descriptor derived from symbolic regression accelerating the discovery of new perovskite catalysts. Nat Commun 2020;11:3513.

131. Fung V, Hu G, Wu Z, Jiang D. Descriptors for hydrogen evolution on single atom catalysts in nitrogen-doped graphene. J Phys Chem C 2020;124:19571-8.

132. Hammer B, Nørskov JK. Electronic factors determining the reactivity of metal surfaces. Surf Sci 1995;343:211-20.

133. Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH. Towards the computational design of solid catalysts. Nat Chem 2009;1:37-46.

134. Xu W, Andersen M, Reuter K. Data-driven descriptor engineering and refined scaling relations for predicting transition metal oxide reactivity. ACS Catal 2021;11:734-42.

135. Andersen M, Reuter K. Adsorption enthalpies for catalysis modeling through machine-learned descriptors. Acc Chem Res 2021;54:2741-9.

136. Zafari M, Nissimagoudar AS, Umer M, Lee G, Kim KS. First principles and machine learning based superior catalytic activities and selectivities for N2 reduction in MBenes, defective 2D materials and 2D π-conjugated polymer-supported single atom catalysts†. J Mater Chem A 2021;9:9203-13.

137. Wan X, Yu W, Niu H, Wang X, Zhang Z, Guo Y. Revealing the oxygen reduction/evolution reaction activity origin of carbon-nitride-related single-atom catalysts: quantum chemistry in artificial intelligence. Chem Eng J 2022;440:135946.

138. Behler J. Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations. Phys Chem Chem Phys 2011;13:17930-55.

139. Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev 1964;136:B864.

140. Deringer VL, Caro MA, Csányi G. Machine learning interatomic potentials as emerging tools for materials science. Adv Mater 2019;31:1902765.

141. Vink RLC, Barkema GT, van der Weg WF. Raman spectra and structure of amorphous Si. Phys Rev B 2001;63:115210.

142. Artrith N, Urban A. An implementation of artificial neural-network potentials for atomistic materials simulations: performance for TiO2. Comput Mater Sci 2016;114:135-50.

143. Zhang Y, Hu C, Jiang B. Embedded atom neural network potentials: efficient and accurate machine learning with a physically inspired representation. J Phys Chem Lett 2019;10:4962-7.

144. Schütt KT, Unke OT, Gastegger M. Equivariant message passing for the prediction of tensorial properties and molecular spectra. arXiv. [Preprint.] June 7, 2021 [accessed 2023 August 29]. Available from: https://arxiv.org/abs/2102.03150.

145. Behler J. Four generations of high-dimensional neural network potentials. Chem Rev 2021;121:10037-72.

146. Singraber A, Behler J, Dellago C. Library-based LAMMPS implementation of high-dimensional neural network potentials. J Chem Theory Comput 2019;15:1827-40.

147. Kocer E, Ko TW, Behler J. Neural network potentials: a concise overview of methods. Annu Rev Phys Chem 2022;73:163-86.

148. Zitnick CL, Das A, Kolluru A, et al. Spherical channels for modeling atomic interactions. Adv Neural Inf Process Syst 2022;35:8054-67. Available from: https://proceedings.neurips.cc/paper_files/paper/2022/file/3501bea1ac61fedbaaff2f88e5fa9447-Paper-Conference.pdf. [Last accessed on 29 Aug 2023]

149. Batzner S, Musaelian A, Sun L, et al. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nat Commun 2022;13:2453.

150. Byggmästar J, Nordlund K, Djurabekova F. Gaussian approximation potentials for body-centered-cubic transition metals. Phys Rev Mater 2020;4:093802.

151. Bartók AP, Payne MC, Kondor R, Csányi G. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys Rev Lett 2010;104:136403.

152. Balabin RM, Lomakina EI. Support vector machine regression (LS-SVM) - an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data? Phys Chem Chem Phys 2011;13:11710-8.

153. Shapeev AV. Moment tensor potentials: a class of systematically improvable interatomic potentials. Multiscale Model Sim 2016;14:1153-73.

154. Sauceda HE, Gastegger M, Chmiela S, Müller KR, Tkatchenko A. Molecular force fields with gradient-domain machine learning (GDML): comparison and synergies with classical force fields. J Chem Phys 2020;153:124109.

155. Artrith N, Kolpak AM. Understanding the composition and activity of electrocatalytic nanoalloys in aqueous solvents: a combination of DFT and accurate neural network potentials. Nano Lett 2014;14:2670-6.

156. Chen L, Tian Y, Hu X, et al. A universal machine learning framework for electrocatalyst innovation: a case study of discovering alloys for hydrogen evolution reaction. Adv Funct Mater 2022;32:2208418.

157. Li C, Li Y, Jiang B. First-principles surface reaction rates by ring polymer molecular dynamics and neural network potential: role of anharmonicity and lattice motion. Chem Sci 2023;14:5087-98.

158. Behler J. Erratum: “Perspective: machine learning potentials for atomistic simulations” [J. Chem. Phys. 145, 170901 (2016)]. J Chem Phys 2016;145:170901.

159. Gilpin LH, Bau D, Yuan BZ, Bajwa A, Specter M, Kagal L. Explaining explanations: an overview of interpretability of machine learning. In: 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA); 2018 Oct 1-3; Turin, Italy. IEEE; 2019. p. 80-9.

160. Iwasaki Y, Sawada R, Stanev V, et al. Identification of advanced spin-driven thermoelectric materials via interpretable machine learning. npj Comput Mater 2019;5:103.

161. Linardatos P, Papastefanopoulos V, Kotsiantis S. Explainable AI: a review of machine learning interpretability methods. Entropy 2020;23:18.

162. Allen AEA, Tkatchenko A. Machine learning of material properties: predictive and interpretable multilinear models. Sci Adv 2022;8:eabm7185.

163. Yano J, Gaffney KJ, Gregoire J, et al. The case for data science in experimental chemistry: examples and recommendations. Nat Rev Chem 2022;6:357-70.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/