REFERENCES

1. Nisar A, Zhang C, Boesl B, Agarwal A. A perspective on challenges and opportunities in developing high entropy-ultra high temperature ceramics. Ceram Int 2020;46:25845-53.

2. Akrami S, Edalati P, Fuji M, Edalati K. High-entropy ceramics: review of principles, production and applications. Mater Sci Eng R Rep 2021;146:100644.

3. Demirskyi D, Borodianska H, Suzuki TS, Sakka Y, Yoshimi K, Vasylkiv O. High-temperature flexural strength performance of ternary high-entropy carbide consolidated via spark plasma sintering of TaC, ZrC and NbC. Scr Mater 2019;164:12-6.

4. Golla BR, Mukhopadhyay A, Basu B, Thimmappa SK. Review on ultra-high temperature boride ceramics. Prog Mater Sci 2020;111:100651.

5. Peters AB, Zhang D, Nagle DC, Spicer JB. Reactive two-step additive manufacturing of ultra-high temperature carbide ceramics. Addit Manuf 2023;61:103318.

6. Ni D, Cheng Y, Zhang J, et al. Advances in ultra-high temperature ceramics, composites, and coatings. J Adv Ceram 2022;11:1-56.

7. Dai F, Wen B, Sun Y, Ren Y, Xiang H, Zhou Y. Grain boundary segregation induced strong UHTCs at elevated temperatures: a universal mechanism from conventional UHTCs to high entropy UHTCs. J Mater Sci Technol 2022;123:26-33.

8. Guo R, Mao H, Shen P. Ultra-fast high-temperature synthesis and densification of high-entropy diborides and diboride-carbide ceramics. J Eur Ceram Soc 2023;43:5763-73.

9. Morris BA, Povolny SJ, Seidel GD, Tallon C. Effects of oxidation on the effective thermomechanical properties of porous ultra-high temperature ceramics in compression via computational micromechanics and MPM. Open Ceram 2023;15:100382.

10. Oses C, Toher C, Curtarolo S. High-entropy ceramics. Nat Rev Mater 2020;5:295-309.

11. Wei X, Liu J, Li F, Qin Y, Liang Y, Zhang G. High entropy carbide ceramics from different starting materials. J Eur Ceram Soc 2019;39:2989-94.

12. Zhou J, Zhang J, Zhang F, Niu B, Lei L, Wang W. High-entropy carbide: a novel class of multicomponent ceramics. Ceram Int 2018;44:22014-8.

13. Yan X, Constantin L, Lu Y, Silvain J, Nastasi M, Cui B. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity. J Am Ceram Soc 2018;101:4486-91.

14. Zeng Y, Wang D, Xiong X, et al. Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3,000 °C. Nat Commun 2017;8:15836.

15. Csanádi T, Castle E, Reece MJ, Dusza J. Strength enhancement and slip behaviour of high-entropy carbide grains during micro-compression. Sci Rep 2019;9:10200.

16. Wang F, Yan X, Wang T, et al. Irradiation damage in (Zr0.25Ta0.25Nb0.25Ti0.25)C high-entropy carbide ceramics. Acta Mater 2020;195:739-49.

17. Yeh J, Chen S, Lin S, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 2004;6:299-303.

18. Ma J, Huang C. High entropy energy storage materials: synthesis and application. J Energy Storage 2023;66:107419.

19. Ying T, Yu T, Qi Y, Chen X, Hosono H. High entropy van der Waals materials. Adv Sci 2022;9:e2203219.

20. Moghaddam A, Fereidonnejad R, Cabot A. Semi-ordered high entropy materials: the case of high entropy intermetallic compounds. J Alloys Compd 2023;960:170802.

21. Yao G, Wang W, Li P, et al. Electronic structures and strengthening mechanisms of superhard high-entropy diborides. Rare Met 2023;42:614-28.

22. Sarker P, Harrington T, Toher C, et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat Commun 2018;9:4980.

23. Yao G, Wang WY, Zou C, et al. Local orders, lattice distortions, and electronic structure dominated mechanical properties of (ZrHfTaM1M2)C (M = Nb, Ti, V). J Am Ceram Soc 2022;105:4260-76.

24. Dai F, Wen B, Sun Y, Xiang H, Zhou Y. Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential. J Mater Sci Technol 2020;43:168-74.

25. Kaufmann K, Maryanovsky D, Mellor WM, et al. Discovery of high-entropy ceramics via machine learning. npj Comput Mater 2020;6:42.

26. Chen L, Chen Z, Yao X, et al. High-entropy alloy catalysts: high-throughput and machine learning-driven design. J Mater Inf 2022;2:19.

27. Zhou Y, Zhang Z, Wang D, et al. New trends in additive manufacturing of high-entropy alloys and alloy design by machine learning: from single-phase to multiphase systems. J Mater Inf 2022;2:18.

28. Chen Z, Yang Y. Data-driven design of eutectic high entropy alloys. J Mater Inf 2023;3:10.

29. Pak AY, Sotskov V, Gumovskaya AA, et al. Machine learning-driven synthesis of TiZrNbHfTaC5 high-entropy carbide. npj Comput Mater 2023;9:7.

30. Castle E, Csanádi T, Grasso S, Dusza J, Reece M. Processing and properties of high-entropy ultra-high temperature carbides. Sci Rep 2018;8:8609.

31. Dusza J, Švec P, Girman V, et al. Microstructure of (Hf-Ta-Zr-Nb)C high-entropy carbide at micro and nano/atomic level. J Eur Ceram Soc 2018;38:4303-7.

32. Xiong K, You L, Zhang S, et al. Pressure and temperature effects on (TiZrTa)C medium-entropy carbide from first-principles. J Mater Res Technol 2023;23:2288-300.

33. Jin C, Xiong K, Guo L, et al. A DFT insight into the mechanical, electronic and thermodynamic properties of (TiZrHf)C medium-entropy carbide ceramic. Results Phys 2022;35:105341.

34. Demirskyi D, Suzuki TS, Yoshimi K, Vasylkiv O. Synthesis and high-temperature properties of medium-entropy (Ti,Ta,Zr,Nb)C using the spark plasma consolidation of carbide powders. Open Ceram 2020;2:100015.

35. Demirskyi D, Nishimura T, Suzuki TS, Sakka Y, Vasylkiv O, Yoshimi K. High-temperature toughening in ternary medium-entropy (Ta1/3Ti1/3Zr1/3)C carbide consolidated using spark-plasma sintering. J Asian Ceram Soc 2020;8:1262-70.

36. Peng C, Tang H, He Y, et al. A novel non-stoichiometric medium-entropy carbide stabilized by anion vacancies. J Mater Sci Technol 2020;51:161-6.

37. Deng H, Xie Z, Wang M, et al. A nanocrystalline AlCoCuNi medium-entropy alloy with high thermal stability via entropy and boundary engineering. Mater Sci Eng A 2020;774:138925.

38. Chen H, Xiang H, Dai F, et al. High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C. J Mater Sci Technol 2019;35:1700-5.

39. Peng C, Gao X, Wang M, et al. Diffusion-controlled alloying of single-phase multi-principal transition metal carbides with high toughness and low thermal diffusivity. Appl Phys Lett 2019;114:011905.

40. Wang Y, Csanádi T, Zhang H, Dusza J, Reece MJ, Zhang R. Enhanced Hardness in high-entropy carbides through atomic randomness. Adv Theory Simul 2020;3:2000111.

41. Ye B, Wen T, Chu Y. High-temperature oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics in air. J Am Ceram Soc 2020;103:500-7.

42. Wang Y, Zhang R, Zhang B, et al. The role of multi-elements and interlayer on the oxidation behaviour of (Hf-Ta-Zr-Nb)C high entropy ceramics. Corros Sci 2020;176:109019.

43. Levack D J, Horton J F, Jennings T, et al. Evolution of low enriched uranium nuclear thermal propulsion vehicle and engine design. In: AIAA Propulsion and Energy 2019 Forum; 2019 Aug 19-22; Indianapolis, IN, USA. American Institute of Aeronautics and Astronautics, Inc.; 2019. p. 3943.

44. Reynolds CB, Horton JF, Joyner CR, Kokan T, Levack DJ. Applications of nuclear thermal propulsion to lunar architectures. In: AIAA Propulsion and Energy 2019 Forum; 2019 Aug 19-22; Indianapolis, IN, USA. American Institute of Aeronautics and Astronautics, Inc.; 2019. p. 4032.

45. Ji Y, Zhang H, Sun J, Shi L. Thermal performance optimization of a fuel element in particle bed reactors for nuclear thermal propulsion. Nucl Eng Des 2019;355:110316.

46. Reynolds CB, Joyner CR, Kokan TS, Levack DJ, Muzek BJ. Mars opposition missions using nuclear thermal propulsion. In: AIAA Propulsion and Energy 2020 Forum; 2020 Aug 24-28; virtual event. American Institute of Aeronautics and Astronautics, Inc.; 2020. p. 3850.

47. Burns D, Johnson S. Nuclear thermal propulsion reactor materials. In: Nuclear Materials. IntechOpen; 2021. Available from: https://www.intechopen.com/chapters/71396. [Last accessed on 16 Aug 2023].

48. Lin CS, Youinou GJ. Design and analysis of a 250 MW plate-fuel reactor for nuclear thermal propulsion. Available from: https://www.osti.gov/biblio/1638498. [Last accessed on 15 Aug 2023].

49. Thody A. Irradiation capsule development for composite fuels for nuclear thermal propulsion. Available from: https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/6395wd417. [Last accessed on 15 Aug 2023]

50. Searight WT, Palomares KB, Werner JE, Todosow M, Lenox KE. Subscale maturation of advanced reactor technologies (SMART): a path forward for nuclear thermal propulsion fuel and reactor development. Prog Nucl Energy 2022;153:104432.

51. Wang SB, Ma Y, Guo SM, Xie QL. Comparation and analysis of nuclear thermal propulsion reactor fuel. Manned Spaceflight 2018;24:784-95. (in Chinese). Available from: https://www.cnki.net/kcms/doi/10.16329/j.cnki.zrht.2018.06.012.html. [Last accessed on 15 Aug 2023].

52. Farhadizadeh AR, Ghomi H. Mechanical, structural, and thermodynamic properties of TaC-ZrC ultra-high temperature ceramics using first principle methods. Mater Res Express 2020;7:036502.

53. Tsuppayakorn-aek P, Ektarawong A, Sukmas W, Alling B, Bovornratanaraks T. Thermodynamic stability and superconductivity of tantalum carbides from first-principles cluster expansion and isotropic Eliashberg theory. Comput Mater Sci 2022;202:111004.

54. Di Y, He Z, Wang J. New insights into the mechanical and thermal properties of UN1-xCx from first-principles calculations. J Nucl Mater 2022;571:153991.

55. Gökbulut M, Koç H, Bölükdemir MH, Eser E. Analytical study of the heat capacity and entropy of ZrM (M=N and C) compounds. Int J Mod Phys B 2023:2450276.

56. He R, Fang L, Han T, et al. Elasticity, mechanical and thermal properties of polycrystalline hafnium carbide and tantalum carbide at high pressure. J Eur Ceram Soc 2022;42:5220-8.

57. Yang XY, Lu Y, Zheng FW, Zhang P. Mechanical, electronic, and thermodynamic properties of zirconium carbide from first-principles calculations. Chin Phys B 2015;24:116301.

58. Pelaccio DG, El-Genk MS, Butt DP. A review of carbide fuel corrosion for nuclear thermal propulsion applications. Am Inst Phys 1994;301:905-18.

59. Wu XZ, Wei GL, Guo X. Study on preparation technology and performance mechanism of multi-component (U,Zr,Nb)C fuel. Sci Technol At Energy 2023;9:1-9. (in Chinese) Available from: http://kns.cnki.net/kcms/detail/11.2044.tl.20230626.1905.008.html. [Last accessed on 15 Aug 2023]

60. Butt DP, Wallace TC. The U-Zr-C ternary phase diagram above 2473 K. J Am Ceram Soc 1993;76:1409-19.

61. Bourgeois L, Dehaudt P, Lemaignan C, Hammou A. Factors governing microstructure development of Cr2O3-doped UO2 during sintering. J Nucl Mater 2001;297:313-26.

62. Koroteev AS. Nuclear propulsion system application in the space exploration. In: The 10th International Burn and Combustion Summit (2003).

63. Tian F, Lin DY, Gao X, Zhao YF, Song HF. Erratum: “a structural modeling approach to solid solutions based on the similar atomic environment” [J. Chem. Phys. 153, 034101 (2020)]. J Chem Phys 2020;153:034101.

64. Song H, Tian F, Hu Q, et al. Local lattice distortion in high-entropy alloys. Phys Rev Mater 2017;1:023404.

65. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 1996;54:11169-86.

66. Blöchl PE. Projector augmented-wave method. Phys Rev B 1994;50:17953-79.

67. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865-8.

68. Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B 1976;13:5188-92.

69. Methfessel M, Paxton AT. High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 1989;40:3616-21.

70. Blöchl PE, Jepsen O, Andersen OK. Improved tetrahedron method for Brillouin-zone integrations. Phys Rev B 1994;49:16223-33.

71. Murnaghan FD. The Compressibility of media under extreme pressures. Proc Natl Acad Sci U S A 1944;30:244-7.

72. Nakashima PN, Smith AE, Etheridge J, Muddle BC. The bonding electron density in aluminum. Science 2011;331:1583-6.

73. Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Cryst 2011;44:1272-6.

74. Ma D, Grabowski B, Körmann F, Neugebauer J, Raabe D. Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: importance of entropy contributions beyond the configurational one. Acta Mater 2015;100:90-7.

75. Song H, Liu H. Modified mean-field potential approach to thermodynamic properties of a low-symmetry crystal: beryllium as a prototype. Phys Rev B 2007;75:245126.

76. Wang Y, Li L. Mean-field potential approach to thermodynamic properties of metal: Al as a prototype. Phys Rev B 2000;62:196-202.

77. Wang Y, Xu Y, Liu Y, et al. First-principles study of the role of surface in the heavy-fermion compound CeRh2Si2. Phys Rev B 2021;103:165140.

78. Wu J, Yang Z, Xian J, Gao X, Lin D, Song H. Structural and thermodynamic properties of the high-entropy alloy AlCoCrFeNi based on first-principles calculations. Front Mater 2020;7:590143.

79. Wu J, Wang YC, Liu Y, et al. First-principles study on the electronic structure transition of β-UH3 under high pressure. Matter Radiat Extrem 2022;7:058402.

80. Birch F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300°K. J Geophys Res 1978;83:1257-68.

81. Ye B, Wen T, Nguyen MC, Hao L, Wang C, Chu Y. First-principles study, fabrication and characterization of (Zr0.25Nb0.25Ti0.25V0.25)C high-entropy ceramics. Acta Mater 2019;170:15-23.

82. Jiang S, Shao L, Fan T, Duan J, Chen X, Tang B. Elastic and thermodynamic properties of high entropy carbide (HfTaZrTi)C and (HfTaZrNb)C from ab initio investigation. Ceram Int 2020;46:15104-12.

83. Maibam J, Indrajit Sharma B, Bhattacharjee R, Thapa R, Brojen Singh R. Electronic structure and elastic properties of scandium carbide and yttrium carbide: a first principles study. Phys B Condens Matter 2011;406:4041-5.

84. Korir K, Amolo G, Makau N, Joubert D. First-principle calculations of the bulk properties of 4d transition metal carbides and nitrides in the rocksalt, zincblende and wurtzite structures. Diam Relat Mater 2011;20:157-64.

85. Shi H, Zhang P, Li S, Sun B, Wang B. Electronic structures and mechanical properties of uranium monocarbide from first-principles LDA + U and GGA + U calculations. Phys Lett A 2009;373:3577-81.

86. Mei Z, Ye B, Yacout AM, Beeler B, Gao Y. First-principles study of the surface properties of uranium carbides. J Nucl Mater 2020;542:152257.

87. Isaev EI, Simak SI, Abrikosov IA, et al. Phonon related properties of transition metals, their carbides, and nitrides: a first-principles study. J Appl Phys 2007;101:123519.

88. Zhao Y, Qiao J, Ma S, et al. A hexagonal close-packed high-entropy alloy: the effect of entropy. Mater Des 2016;96:10-5.

89. Wang Z, Qiu W, Yang Y, Liu C. Atomic-size and lattice-distortion effects in newly developed high-entropy alloys with multiple principal elements. Intermetallics 2015;64:63-9.

90. Viennois R, Bérardan D, Popescu C. Crystal structure, lattice dynamics, and thermodynamic properties of a thermoelectric orthorhombic BaCu2Se2 compound. J Phys Chem C 2020;124:13627-38.

91. Wen T, Ye B, Nguyen MC, Ma M, Chu Y. Thermophysical and mechanical properties of novel high-entropy metal nitride-carbides. J Am Ceram Soc 2020;103:6475-89.

92. Watari K, Shinde SL. High thermal conductivity materials. MRS Bull 2001;26:440-4.

93. Aliakbari A, Amiri P. Structural, elastic, electronic, thermal, and phononic properties of yttrium carbide: first-principles calculations. Mater Chem Phys 2021;270:124744.

94. Zhang P, Ye L, Chen F, Han W, Wu Y, Zhao T. Stability, mechanical, and thermodynamic behaviors of (TiZrHfTaM)C (M = Nb, Mo, W, V, Cr) high-entropy carbide ceramics. J Alloy Compd 2022;903:163868.

95. Mankad VH, Jha PK. Thermodynamic properties of nuclear material uranium carbide using density functional theory. J Therm Anal Calorim 2016;124:11-20.

96. Iikubo S, Ohtani H, Hasebe M. First-principles calculations of the specific heats of cubic carbides and nitrides. Mater Trans 2010;51:574-7.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/