REFERENCES

1. Chou K, Li N, Marquis EA. Enhanced work hardening from oxygen-stabilized ω precipitates in an aged metastable β Ti-Nb alloy. Acta Mater 2021;220:117302.

2. Liang Q, Wang D, Zheng Y, et al. Shuffle-nanodomain regulated strain glass transition in Ti-24Nb-4Zr-8Sn alloy. Acta Mater 2020;186:415-24.

3. Li T, Wang S, Fan W, et al. CALPHAD-aided design for superior thermal stability and mechanical behavior in a TiZrHfNb refractory high-entropy alloy. Acta Mater 2023;246:118728.

4. Su Y, Liang C, Sun X, et al. Composition-dependent shuffle-shear coupling and shuffle-regulated strain glass transition in compositionally modulated Ti-Nb alloys. Acta Mater 2023;246:118697.

5. Kim H, Ikehara Y, Kim J, Hosoda H, Miyazaki S. Martensitic transformation, shape memory effect and superelasticity of Ti-Nb binary alloys. Acta Mater 2006;54:2419-29.

6. Liang Q, Zheng Y, Wang D, et al. Nano-scale structural non-uniformities in gum like Ti-24Nb-4Zr-8Sn metastable β-Ti alloy. Scr Mater 2019;158:95-9.

7. Zhang J, Li Y, Li W. Metastable phase diagram on heating in quenched Ti-Nb high-temperature shape memory alloys. J Mater Sci 2021;56:11456-68.

8. Xiong C, Li Y, Zhang J, et al. Superelasticity over a wide temperature range in metastable β-Ti shape memory alloys. J Alloys Compd 2021;853:157090.

9. Pang E, Hildyard E, Connor L, Pickering E, Jones N. The effect of quench rate on the β-α″ martensitic transformation in Ti-Nb alloys. Mater Sci Eng A 2021;817:141240.

10. Wang K, Wu D, Wang D, et al. Influence of cooling rate on ω phase precipitation and deformation mechanism of a novel metastable β titanium alloy. Mater Sci Eng A 2022;829:142151.

11. dos Santos L, Campo KN, Caram R, Najar Lopes ÉS. Oxygen addition in biomedical Ti-Nb alloys with low Nb contents: effect on the microstructure and mechanical properties. Mater Sci Eng A 2021;823:141750.

12. Preisler D, Janovská M, Seiner H, et al. High-throughput characterization of elastic moduli of Ti-Nb-Zr-O biomedical alloys fabricated by field-assisted sintering technique. J Alloys Compd 2023;932:167656.

13. Lai M, Li T, Yan F, Li J, Raabe D. Revisiting ω phase embrittlement in metastable β titanium alloys: role of elemental partitioning. Scr Mater 2021;193:38-42.

14. Li T, Lai M, Kostka A, et al. Composition of the nanosized orthorhombic O′ phase and its direct transformation to fine α during ageing in metastable β-Ti alloys. Scr Mater 2019;170:183-8.

15. Li X, Zhao Q, Tian Y, et al. Phase transformation induced transitional twin boundary in body-centered cubic metals. Acta Mater 2023;249:118815.

16. Ahmed T, Rack HJ. Martensitic transformations in Ti-(16-26 at%) Nb alloys. J Mater Sci 1996;31:4267-76.

17. Todai M, Fukuda T, Kakeshita T. Relation between negative temperature coefficient in electrical resistivity and athermal ω phase in Ti-xNb (26≤x≤29at.%) alloys. J Alloys Compds 2013;577:S431-4.

18. Nag S, Devaraj A, Srinivasan R, et al. Novel mixed-mode phase transition involving a composition-dependent displacive component. Phys Rev Lett 2011;106:245701.

19. Chou K, Marquis EA. Oxygen effects on ω and α phase transformations in a metastable β Ti-Nb alloy. Acta Mater 2019;181:367-76.

20. Ma S, Chen Q, Zhang W, Wang S. The properties of typical β/ω and β/α″ heterophase interfaces in β-Ti alloys from a first-principles insight. J Mater Sci 2022;57:4625-42.

21. Qi L, Chen C, Duan H, et al. Reversible displacive transformation with continuous transition interface in a metastable β titanium alloy. Acta Mater 2019;174:217-26.

22. Chen W, Cao S, Kou W, et al. Origin of the ductile-to-brittle transition of metastable β-titanium alloys: self-hardening of ω-precipitates. Acta Mater 2019;170:187-204.

23. Qi L, He S, Chen C, et al. Diffusional-displacive transformation in a metastable β titanium alloy and its strengthening effect. Acta Mater 2020;195:151-62.

24. Wang W, Gong D, Wang H, et al. Spinodal decomposition coupled with a continuous crystal ordering in a titanium alloy. Acta Mater 2022;233:117969.

25. Okamoto NL, Kasatani S, Luckabauer M, Enzinger R, Ichitsubo T. Evolution of microstructure and variations in mechanical properties accompanied with diffusionless isothermal ω transformation in β -titanium alloys. Phys Rev Mater 2020;4:123603.

26. Li T, Kent D, Sha G, et al. New insights into the phase transformations to isothermal ω and ω-assisted α in near β-Ti alloys. Acta Mater 2016;106:353-66.

27. Moffat DL, Kattner UR. The stable and metastable Ti-Nb phase diagrams. Metall Trans A 1988;19:2389-97.

28. Thoemmes A, Bataev I, Lazurenko D, et al. Microstructure and lattice parameters of suction-cast Ti-Nb alloys in a wide range of Nb concentrations. Mater Sci Eng A 2021;818:141378.

29. Boyne A, Wang D, Shi R, et al. Pseudospinodal mechanism for fine α/β microstructures in β-Ti alloys. Acta Mater 2014;64:188-97.

30. Cahn JW, Hilliard JE. Free energy of a nonuniform system. I. Interfacial free energy. Chem Phys 1958;28:258-67.

31. Kostorz G. Theory of structural transformations in solids by A. G. Khachaturyan. Acta Crystallogr A Found Crystallogr 1985;41:208-208.

32. Lai M, Tasan C, Zhang J, Grabowski B, Huang L, Raabe D. Origin of shear induced β to ω transition in Ti-Nb-based alloys. Acta Mater 2015;92:55-63.

33. Zhao Q, Sun Q, Xin S, et al. High-strength titanium alloys for aerospace engineering applications: A review on melting-forging process. Mater Sci Eng A 2022;845:143260.

34. Ballor J, Li T, Prima F, Boehlert CJ, Devaraj A. A review of the metastable omega phase in beta titanium alloys: the phase transformation mechanisms and its effect on mechanical properties. Int Mater Rev 2023;68:26-45.

35. Zhang Y, Xiang S, Tan Y, Ji X. Study on ω-assisted α nucleation behavior of metastable β-Ti alloys from phase transformation mechanism. J Alloys Compd 2022;890:161686.

36. Allen SM, Cahn JW. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall 1979;27:1085-95.

37. Liu Y, Pan T, Zhang L, Yu D, Ge Y. Kinetic modeling of diffusion mobilities in bcc Ti-Nb alloys. J Alloys Compd 2009;476:429-35.

38. Zhu J, Wu H, Wu Y, et al. Influence of Ni4Ti3 precipitation on martensitic transformations in NiTi shape memory alloy: R phase transformation. Acta Mater 2021;207:116665.

39. Shen C, Simmons J, Wang Y. Effect of elastic interaction on nucleation: II. Implementation of strain energy of nucleus formation in the phase field method. Acta Mater 2007;55:1457-66.

40. Zhang T, Wang D, Wang Y. Novel transformation pathway and heterogeneous precipitate microstructure in Ti-alloys. Acta Mater 2020;196:409-17.

41. Wang Y, Banerjee D, Su C, Khachaturyan A. Field kinetic model and computer simulation of precipitation of L12 ordered intermetallics from f.c.c. solid solution. Acta Mater 1998;46:2983-3001.

42. Choudhuri D, Zheng Y, Alam T, et al. Coupled experimental and computational investigation of omega phase evolution in a high misfit titanium-vanadium alloy. Acta Mater 2017;130:215-28.

43. Shi R, Gao Y, Li D, Zhao W, Zheng Y. Recent advances in the design of novel β-titanium alloys using integrated theory, computer simulation, and advanced characterization. Adv Eng Mater 2021;23:2100152.

44. Dong T, Liang C, Su Y, et al. Phase field simulations for the crossover from sharp martensitic transformation into smooth strain glass transition by fine precipitates. Acta Mater 2023;245:118634.

45. Sharma A, Soni V, Dasari S, et al. Fine scale alpha precipitation in Ti-19at.%v in the absence of influence from omega precipitates. Scri Mater 2021;196:113766.

46. An Z, Mao S, Yang T, et al. Spinodal-modulated solid solution delivers a strong and ductile refractory high-entropy alloy. Mater Horiz 2021;8:948-55.

47. Xiang T, Zhao M, Du P, Xie G. Heat treatment effects on microstructure and mechanical properties of TiZrNbTa high-entropy alloy. J Alloys Compd 2023;930:167408.

48. Radlinger T, Winkler R, Knoll P, et al. A study on the correlation between micro and magnetic domain structure of Cu52Ni34Fe14 spinodal alloys. J Alloys Compd 2022;922:166214.

49. Chen Y, Yang B, Zhou Y, Wu Y, Zhu H. Evaluation of pitting corrosion in duplex stainless steel Fe20Cr9Ni for nuclear power application. Acta Mater 2020;197:172-83.

50. Yao T, Sen A, Wagner A, et al. Understanding spinodal and binodal phase transformations in U-50Zr. Materialia 2021;16:101092.

51. Rao Z, Dutta B, Körmann F, et al. Beyond solid solution high-entropy alloys: tailoring magnetic properties via spinodal decomposition. Adv Funct Mater 2021;31:2007668.

52. Wu Y, Zhang F, Li F, et al. Local chemical fluctuation mediated ultra-sluggish martensitic transformation in high-entropy intermetallics. Mater Horiz 2022;9:804-14.

53. Ishiguro Y, Tsukada Y, Koyama T. Phase-field study of the spinodal decomposition rate of β phase in oxygen-added Ti-Nb alloys. Comput Maters Sci 2020;174:109471.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/