REFERENCES

1. Tiwary CS, Pandey P, Sarkar S, et al. Five decades of research on the development of eutectic as engineering materials. Prog Mater Sci 2022;123:100793.

2. Chanda B, Potnis G, Jana PP, Das J. A review on nano-/ultrafine advanced eutectic alloys. J Alloys Compd 2020;827:154226.

3. Kerr HW, Winegard WC. Solidification of eutectic alloys. JOM 1966;18:563-9.

4. Dunlevey FM, Wallace JF. The effect of thermal cycling on the structure and properties of a Co, Cr, Ni-TaC directionally solidified eutectic alloy. Metall Trans B 1974;5:1351-6.

5. Buchanan ER, Tarshis LA. Strengths and failure mechanisms of a Co-15Cr-13TaC directionally solidified eutectic alloy. Metall Trans B 1974;5:1413-22.

6. Oishi K, Araki S, Terada Y. Effect of lamellar spacing on creep strength of α-Mg/C14-Mg2Ca eutectic alloy. Mater Trans 2021;62:1414-9.

7. El-ashram T, Shalaby RM. Effect of rapid solidification and small additions of Zn and Bi on the structure and properties of Sn-Cu eutectic alloy. J Electron Mater 2005;34:212-5.

8. El-daly A, Hammad A. Enhancement of creep resistance and thermal behavior of eutectic Sn-Cu lead-free solder alloy by Ag and In-additions. Mater Des 2012;40:292-8.

9. Liu Y, Michi RA, Dunand DC. Cast near-eutectic Al-12.5 wt.% Ce alloy with high coarsening and creep resistance. Mater Sci Eng A 2019;767:138440.

10. Erol M, Keşlioĝlu K, Şahingöz R, Maraşl N. Experimental determination of thermal conductivity of solid and liquid phases in Bi-Sn and Zn-Mg binary eutectic alloys. Met Mater Int 2005;11:421-8.

11. Wang Z, Wang H, Yang M, et al. Thermal reliability of Al-Si eutectic alloy for thermal energy storage. Mater Res Bull 2017;95:300-6.

12. Saheb N, Laoui T, Daud A, Harun M, Radiman S, Yahaya R. Influence of Ti addition on wear properties of Al-Si eutectic alloys. Wear 2001;249:656-62.

13. Yasmin T, Khalid AA, Haque M. Tribological (wear) properties of aluminum-silicon eutectic base alloy under dry sliding condition. J Mater Process Technol 2004;153-154:833-8.

14. Pashechko M, Lenik K. Segregation of atoms of the eutectic alloys Fe-Mn-C-B-Si-Ni-Cr at friction wear. Wear 2009;267:1301-4.

15. Abouei V, Saghafian H, Shabestari S, Zarghami M. Effect of Fe-rich intermetallics on the wear behavior of eutectic Al-Si piston alloy (LM13). Mater Des 2010;31:3518-24.

16. Yang J, Jeng S, Bain K, Amato R. Microstructure and mechanical behavior of in-situ directional solidified NiAl/Cr(Mo) eutectic composite. Acta Mater 1997;45:295-308.

17. Caram R, Milenkovic S. Microstructure of Ni-Ni3Si eutectic alloy produced by directional solidification. J Cryst Growth 1999;198-199:844-9.

18. Kakitani R, de Gouveia GL, Garcia A, Cheung N, Spinelli JE. Thermal analysis during solidification of an Al-Cu eutectic alloy: interrelation of thermal parameters, microstructure and hardness. J Therm Anal Calorim 2019;137:983-96.

19. Kamal M, El-blediwi AB, Karman MB. Structure, mechanical properties and electrical resistivity of rapidly solidified Pb-Sn-Cd and Pb-Bi-Sn-Cd alloys. J Mater Sci Mater Electron 1998;9:425-8.

20. Liu CY, Chen C, Tu KN. Electromigration in Sn-Pb solder strips as a function of alloy composition. J Appl Phys 2000;88:5703-9.

21. Feng W, Wang C, Morinaga M. Electronic structure mechanism for the wettability of Sn-based solder alloys. J Electron Mater 2002;31:185-90.

22. Shangguan D, Achari A, Green W. Application of lead-free eutectic Sn-Ag solder in no-clean thick film electronic modules. IEEE Trans Comp Packag Manuf Technol Part B 1994;17:603-11.

23. Gumaan MS, Shalaby RM, Ali EAM, Kamal M. Copper effects in mechanical, thermal and electrical properties of rapidly solidified eutectic Sn-Ag alloy. J Mater Sci Mater Electron 2018;29:8886-94.

24. Shalaby RM. Development of holmium doped eutectic Sn-Ag lead-free solder for electronic packaging. SSMT 2022;34:277-86.

25. Gogebakan M, Kursun C, Gunduz KO, Tarakci M, Gencer Y. Microstructural and mechanical properties of binary Ni-Si eutectic alloys. J Alloys Compd 2015;643:S219-25.

26. Wei L, Zhao Z, Gao J, Cui K. Electrochemical production of a magnetic Ni3Si template in lamellar Ni-Si eutectic alloy. J Electrochem Soc 2017;164:E332-6.

27. Blaber MG, Engel CJ, Vivekchand SR, Lubin SM, Odom TW, Schatz GC. Eutectic liquid alloys for plasmonics: theory and experiment. Nano Lett 2012;12:5275-80.

28. Yunusa M, Adaka A, Aghakhani A, et al. Liquid crystal structure of supercooled liquid gallium and eutectic gallium-indium. Adv Mater 2021;33:e2104807.

29. Sheng LY, Nan L, Zhang W, Guo JT, Ye HQ. Microstructure and mechanical properties determined in compressive tests of quasi-rapidly solidified NiAl-Cr(Mo)-Hf eutectic alloy after hot isostatic pressure and high temperature treatments. J Mater Eng Perform 2010;19:732-6.

30. Tang B, Cogswell DA, Xu G, Milenkovic S, Cui Y. The formation mechanism of eutectic microstructures in NiAl-Cr composites. Phys Chem Chem Phys 2016;18:19773-86.

31. Senkov O, Miller J, Miracle D, Woodward C. Accelerated exploration of multi-principal element alloys for structural applications. Calphad 2015;50:32-48.

32. Senkov ON, Miller JD, Miracle DB, Woodward C. Accelerated exploration of multi-principal element alloys with solid solution phases. Nat Commun 2015;6:6529.

33. Miracle D, Senkov O. A critical review of high entropy alloys and related concepts. Acta Mater 2017;122:448-511.

34. Yeh J, Chen S, Lin S, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 2004;6:299-303.

35. Cantor B, Chang I, Knight P, Vincent A. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A 2004;375-377:213-8.

36. Yao M, Pradeep K, Tasan C, Raabe D. A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scr Mater 2014;72-73:5-8.

37. Kozak R, Sologubenko A, Steurer W. Single-phase high-entropy alloys - an overview. Zeitschrift fur Krist 2015;230:55-68.

38. Laplanche G, Gadaud P, Horst O, Otto F, Eggeler G, George E. Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy. J Alloys Compd 2015;623:348-53.

39. Maiti S, Steurer W. Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy. Acta Mater 2016;106:87-97.

40. Shen J, Agrawal P, Rodrigues TA, et al. Microstructure evolution and mechanical properties in a gas tungsten arc welded Fe42Mn28Co10Cr15Si5 metastable high entropy alloy. Mater Sci Eng A 2023;867:144722.

41. Shen J, Gonçalves R, Choi YT, et al. Microstructure and mechanical properties of gas metal arc welded CoCrFeMnNi joints using a 308 stainless steel filler metal. Scr Mater 2023;222:115053.

42. Tang Z, Senkov ON, Parish CM, et al. Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization. Mater Sci Eng A 2015;647:229-40.

43. Basu I, Ocelík V, De Hosson JTM. Size dependent plasticity and damage response in multiphase body centered cubic high entropy alloys. Acta Mater 2018;150:104-16.

44. Manzoni AM, Glatzel U. New multiphase compositionally complex alloys driven by the high entropy alloy approach. Mater Charact 2019;147:512-32.

45. Han L, Xu X, Li Z, Liu B, Liu CT, Liu Y. A novel equiaxed eutectic high-entropy alloy with excellent mechanical properties at elevated temperatures. Mater Res Lett 2020;8:373-82.

46. Dong Y, Lu Y, Kong J, Zhang J, Li T. Microstructure and mechanical properties of multi-component AlCrFeNiMox high-entropy alloys. J Alloys Compd 2013;573:96-101.

47. Jin X, Zhou Y, Zhang L, Du X, Li B. A novel Fe20Co20Ni41Al19 eutectic high entropy alloy with excellent tensile properties. Mater Lett 2018;216:144-6.

48. Vikram R, Gupta K, Suwas S. Design of a new cobalt base nano-lamellar eutectic high entropy alloy. Scr Mater 2021;202:113993.

49. Wen X, Cui X, Jin G, Liu Y, Zhang Y, Fang Y. In-situ synthesis of nano-lamellar Ni1.5CrCoFe0.5Mo0.1Nbx eutectic high-entropy alloy coatings by laser cladding: alloy design and microstructure evolution. Surf Coatings Technol 2021;405:126728.

50. Shi P, Ren W, Zheng T, et al. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae. Nat Commun 2019;10:489.

51. Muskeri S, Hasannaeimi V, Salloom R, Sadeghilaridjani M, Mukherjee S. Small-scale mechanical behavior of a eutectic high entropy alloy. Sci Rep 2020;10:2669.

52. Lim X. Mixed-up metals make for stronger, tougher, stretchier alloys. Nature 2016;533:306-7.

53. Jiang H, Qiao D, Lu Y, et al. Direct solidification of bulk ultrafine-microstructure eutectic high-entropy alloys with outstanding thermal stability. Scr Mater 2019;165:145-9.

54. Yu Y, He F, Qiao Z, Wang Z, Liu W, Yang J. Effects of temperature and microstructure on the triblogical properties of CoCrFeNiNbx eutectic high entropy alloys. J Alloys Compd 2019;775:1376-85.

55. Karati A, Guruvidyathri K, Hariharan V, Murty B. Thermal stability of AlCoFeMnNi high-entropy alloy. Scr Mater 2019;162:465-7.

56. Shen J, Agrawal P, Rodrigues TA, et al. Gas tungsten arc welding of as-cast AlCoCrFeNi2.1 eutectic high entropy alloy. Mater Des 2022;223:111176.

57. Jiang H, Han K, Gao X, et al. A new strategy to design eutectic high-entropy alloys using simple mixture method. Mater Des 2018;142:101-5.

58. Xie T, Xiong Z, Xu Z, Liu Z, Cheng X. Another eutectic point of Co-Cr-Fe-Ni-M (Hf, Ta, Nb) high-entropy system determined using a simple mixture method correlated with mixing enthalpy. Mater Sci Eng A 2021;802:140634.

59. Jin X, Bi J, Liang Y, Qiao J, Li B. Triple-phase eutectic high-entropy alloy: Al10Co18Cr18Fe18Nb10Ni26. Metall Mater Trans A 2021;52:1314-20.

60. Duan D, Wu Y, Chen H, et al. A strategy to design eutectic high-entropy alloys based on binary eutectics. J Mater Sci Technol 2022;103:152-6.

61. He F, Wang Z, Ai C, Li J, Wang J, Kai J. Grouping strategy in eutectic multi-principal-component alloys. Mater Chem Phys 2019;221:138-43.

62. Li T, Lu Y, Wang T, Li T. Grouping strategy via d-orbit energy level to design eutectic high-entropy alloys. Appl Phys Lett 2021;119:071905.

63. Zhang L, Lu Y, Amar A, et al. Designing eutectic high-entropy alloys containing nonmetallic elements. Adv Eng Mater 2022;24:2200486.

64. He F, Wang Z, Cheng P, et al. Designing eutectic high entropy alloys of CoCrFeNiNbx. J Alloys Compd 2016;656:284-9.

65. Jin X, Zhou Y, Zhang L, Du X, Li B. A new pseudo binary strategy to design eutectic high entropy alloys using mixing enthalpy and valence electron concentration. Mater Des 2018;143:49-55.

66. Mukarram M, Mujahid M, Yaqoob K. Design and development of CoCrFeNiTa eutectic high entropy alloys. J Mater Res Technol 2021;10:1243-9.

67. Huang T, Zhang J, Zhang J, Liu L. Effective design of Cr-Co-Ni-Ta eutectic medium entropy alloys with high compressive properties using combined CALPHAD and experimental approaches. Appl Sci 2021;11:6102.

68. Ding Z, He Q, Yang Y. Exploring the design of eutectic or near-eutectic multicomponent alloys: from binary to high entropy alloys. Sci China Technol Sci 2018;61:159-67.

69. Zou C, Li J, Wang WY, et al. Integrating data mining and machine learning to discover high-strength ductile titanium alloys. Acta Mater 2021;202:211-21.

70. Nitol MS, Dickel DE, Barrett CD. Machine learning models for predictive materials science from fundamental physics: an application to titanium and zirconium. Acta Mater 2022;224:117347.

71. Wang C, Fu H, Jiang L, Xue D, Xie J. A property-oriented design strategy for high performance copper alloys via machine learning. NPJ Comput Mater 2019:5.

72. Zhang H, Fu H, Zhu S, Yong W, Xie J. Machine learning assisted composition effective design for precipitation strengthened copper alloys. Acta Mater 2021;215:117118.

73. Zhao X, Huang H, Wen C, Su Y, Qian P. Accelerating the development of multi-component Cu-Al-based shape memory alloys with high elastocaloric property by machine learning. Comput Mater Sci 2020;176:109521.

74. Singh R, Singh RP, Trehan R. Machine learning algorithms based advanced optimization of EDM parameters: an experimental investigation into shape memory alloys. Sensors Int 2022;3:100179.

75. Hmede R, Chapelle F, Lapusta Y. Review of neural network modeling of shape memory alloys. Sensors 2022;22:5610.

76. Ward L, O'keeffe SC, Stevick J, Jelbert GR, Aykol M, Wolverton C. A machine learning approach for engineering bulk metallic glass alloys. Acta Mater 2018;159:102-11.

77. Xiong J, Shi S, Zhang T. A machine-learning approach to predicting and understanding the properties of amorphous metallic alloys. Mater Des 2020;187:108378.

78. Zhou ZQ, He QF, Liu XD, et al. Rational design of chemically complex metallic glasses by hybrid modeling guided machine learning. NPJ Comput Mater 2021:7.

79. Wu Q, Wang Z, Hu X, et al. Uncovering the eutectics design by machine learning in the Al-Co-Cr-Fe-Ni high entropy system. Acta Mater 2020;182:278-86.

80. Liu F, Xiao X, Huang L, Tan L, Liu Y. Design of NiCoCrAl eutectic high entropy alloys by combining machine learning with CALPHAD method. Mater Today Commun 2022;30:103172.

81. Chen K, Xiong Z, An M, et al. Machine learning correlated with phenomenological mode unlocks the vast compositional space of eutectics of multi-principal element alloys. Mater Des 2022;219:110795.

82. Agarwal R, Sonkusare R, Jha SR, Gurao N, Biswas K, Nayan N. Understanding the deformation behavior of CoCuFeMnNi high entropy alloy by investigating mechanical properties of binary ternary and quaternary alloy subsets. Mater Des 2018;157:539-50.

83. Tsai M, Tsai R, Chang T, Huang W. Intermetallic phases in high-entropy alloys: statistical analysis of their prevalence and structural inheritance. Metals 2019;9:247.

84. Ding Z, He Q, Wang Q, Yang Y. Superb strength and high plasticity in laves phase rich eutectic medium-entropy-alloy nanocomposites. Int J Plast 2018;106:57-72.

85. Chung D, Ding Z, Yang Y. Hierarchical eutectic structure enabling superior fracture toughness and superb strength in CoCrFeNiNb0.5 eutectic high entropy alloy at room temperature. Adv Eng Mater 2019;21:1801060.

86. Ding Z, He Q, Chung D, Yang Y. Evading brittle fracture in submicron-sized high entropy intermetallics in dual-phase eutectic microstructure. Scr Mater 2020;187:280-4.

87. Chen G, Fu X, Luo J, Zu Y, Zhou W. Effect of cooling rate on the microstructure and mechanical properties of melt-grown Al2O3/YAG/ZrO2 eutectic ceramic. J Eur Ceram Soc 2012;32:4195-204.

88. Liu H, Su H, Shen Z, et al. Direct formation of Al2O3/GdAlO3/ZrO2 ternary eutectic ceramics by selective laser melting: microstructure evolutions. J Eur Ceram Soc 2018;38:5144-52.

89. He QF, Ye YF, Yang Y. The configurational entropy of mixing of metastable random solid solution in complex multicomponent alloys. J Appl Phys 2016;120:154902.

90. He QF, Ding ZY, Ye YF, Yang Y. Design of high-entropy alloy: a perspective from nonideal mixing. JOM 2017;69:2092-8.

91. Laplanche G, Kostka A, Reinhart C, Hunfeld J, Eggeler G, George E. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi. Acta Mater 2017;128:292-303.

92. Zhao P, Guan B, Tong Y, et al. A quasi-in-situ EBSD study of the thermal stability and grain growth mechanisms of CoCrNi medium entropy alloy with gradient-nanograined structure. J Mater Sci Technol 2022;109:54-63.

93. Vaidya M, Guruvidyathri K, Murty B. Phase formation and thermal stability of CoCrFeNi and CoCrFeMnNi equiatomic high entropy alloys. J Alloys Compd 2019;774:856-64.

94. He F, Wang Z, Wu Q, et al. Solid solution island of the Co-Cr-Fe-Ni high entropy alloy system. Scr Mater 2017;131:42-6.

95. Ai C, He F, Guo M, et al. Alloy design, micromechanical and macromechanical properties of CoCrFeNiTax eutectic high entropy alloys. J Alloys Compd 2018;735:2653-62.

96. Rahul MR, Phanikumar G. Design of a seven-component eutectic high-entropy alloy. Metall and Mat Trans A 2019;50:2594-8.

97. Zhang L, Lu Y, Amar A, et al. Eutectic high entropy alloys containing B and Si with excellent mechanical properties in annealing. Mater Sci Eng A 2022;856:143994.

98. Chung D, Kwon H, Eze C, Kim W, Na Y. Influence of Ti addition on the strengthening and toughening effect in CoCrFeNiTix multi principal element alloys. Metals 2021;11:1511.

99. Guo Y, Liu L, Zhang Y, et al. A superfine eutectic microstructure and the mechanical properties of CoCrFeNiMox high-entropy alloys. J Mater Res 2018;33:3258-65.

100. Lu W, Luo X, Yang Y, Huang B. Effects of Nb additions on structure and mechanical properties evolution of CoCrNi medium-entropy alloy. Mat Express 2019;9:291-8.

101. Zhang X, Chou T, Li W, Wang Y, Huang J, Cheng L. Microstructure and mechanical properties of (FeCoNi)100-x(NiAl)x eutectic multi-principal element alloys. J Alloys Compd 2021;862:158349.

102. Huo W, Zhou H, Fang F, Xie Z, Jiang J. Microstructure and mechanical properties of CoCrFeNiZrx eutectic high-entropy alloys. Mater Des 2017;134:226-33.

103. Xie T, Xiong Z, Liu Z, Deng G, Cheng X. Excellent combination of compressive strength and ductility of (CoCrFeNi) (Co0.26Cr0.07Fe0.16Ni0.31Hf0.4) high-entropy alloys. Mater Des 2021;202:109569.

104. Wang M, Lu Y, Lan J, et al. Lightweight, ultrastrong and high thermal-stable eutectic high-entropy alloys for elevated-temperature applications. Acta Mater 2023;248:118806.

105. Zhu M, Yao L, Liu Y, Zhang M, Li K, Jian Z. Microstructure evolution and mechanical properties of a novel CrNbTiZrAlx (0.25 ≤ x ≤ 1.25) eutectic refractory high-entropy alloy. Mater Lett 2020;272:127869.

106. Liu Y, Zhang Y, Zhang H, et al. Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Six high-entropy composites. J Alloys Compd 2017;694:869-76.

107. Panina E, Yurchenko N, Tojibaev A, Mishunin M, Zherebtsov S, Stepanov N. Mechanical properties of (HfCo)100-x(NbMo)x refractory high-entropy alloys with a dual-phase bcc-B2 structure. J Alloys Compd 2022;927:167013.

108. Bai J, Wang Z, Zhang M, Qiao J. Effects of tailoring Zn additions on the microstructural evolution and electrical properties in GaInSnZnx high-entropy alloys. Adv Eng Mater 2023; doi: 10.1002/adem.202201831.

109. Wu M, Wang S, Huang H, Shu D, Sun B. CALPHAD aided eutectic high-entropy alloy design. Mater Lett 2020;262:127175.

110. Yurchenko N, Panina E, Zherebtsov S, Stepanov N. Design and characterization of eutectic refractory high entropy alloys. Materialia 2021;16:101057.

111. Chen H, Mao H, Chen Q. Database development and Calphad calculations for high entropy alloys: challenges, strategies, and tips. Mater Chem Phys 2018;210:279-90.

112. Zhou Z, Shang Y, Yang Y. A critical review of the machine learning guided design of metallic glasses for superior glass-forming ability. J Mater Inf 2022;2:2.

113. Qiao L, Ramanujan R, Zhu J. Machine learning discovery of a new cobalt free multi-principal-element alloy with excellent mechanical properties. Mater Sci Eng A 2022;845:143198.

114. Zhang C, Zhang F, Chen S, Cao W. Computational thermodynamics aided high-entropy alloy design. JOM 2012;64:839-45.

115. Wei Q, Luo G, Zhang J, et al. Designing high entropy alloy-ceramic eutectic composites of MoNbRe0.5TaW(TiC)x with high compressive strength. J Alloys Compd 2020;818:152846.

116. Qu N, Chen Y, Lai Z, Liu Y, Zhu J. The phase selection via machine learning in high entropy alloys. Procedia Manuf 2019;37:299-305.

117. Zhou Z, Zhou Y, He Q, Ding Z, Li F, Yang Y. Machine learning guided appraisal and exploration of phase design for high entropy alloys. NPJ Comput Mater 2019:5.

118. Chang H, Tao Y, Liaw PK, Ren J. Phase prediction and effect of intrinsic residual strain on phase stability in high-entropy alloys with machine learning. J Alloys Compd 2022;921:166149.

119. Batista GEAPA, Prati RC, Monard MC. A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explor Newsl 2004;6:20-9.

120. Zhu Z, Ma K, Wang Q, Shek C. Compositional dependence of phase formation and mechanical properties in three CoCrFeNi-(Mn/Al/Cu) high entropy alloys. Intermetallics 2016;79:1-11.

121. Tian Q, Zhang G, Yin K, Cheng W, Wang Y, Huang J. Effect of Ni content on the phase formation, tensile properties and deformation mechanisms of the Ni-rich AlCoCrFeNix (x = 2, 3, 4) high entropy alloys. Mater Charact 2021;176:111148.

122. Wen C, Zhang Y, Wang C, et al. Machine learning assisted design of high entropy alloys with desired property. Acta Mater 2019;170:109-17.

123. Dewangan SK, Kumar V. Application of artificial neural network for prediction of high temperature oxidation behavior of AlCrFeMnNiWx (x = 0, 0.05, 0.1, 0.5) high entropy alloys. Int J Refract Met Hard Mater 2022;103:105777.

124. Roy A, Balasubramanian G. Predictive descriptors in machine learning and data-enabled explorations of high-entropy alloys. Comput Mater Sci 2021;193:110381.

125. Krishna YV, Jaiswal UK, R RM. Machine learning approach to predict new multiphase high entropy alloys. Scr Mater 2021;197:113804.

126. Jaiswal UK, Vamsi Krishna Y, Rahul M, Phanikumar G. Machine learning-enabled identification of new medium to high entropy alloys with solid solution phases. Comput Mater Sci 2021;197:110623.

127. Islam N, Huang W, Zhuang HL. Machine learning for phase selection in multi-principal element alloys. Comput Mater Sci 2018;150:230-5.

128. Machaka R. Machine learning-based prediction of phases in high-entropy alloys. Comput Mater Sci 2021;188:110244.

129. Elton LRB. Atomic theory for students of metallurgy. Phys Bull 1960;11:309-309.

130. Huang W, Martin P, Zhuang HL. Machine-learning phase prediction of high-entropy alloys. Acta Mater 2019;169:225-36.

131. Chang Y, Jui C, Lee W, Yeh A. Prediction of the composition and hardness of high-entropy alloys by machine learning. JOM 2019;71:3433-42.

132. Bundela AS, Rahul MR. Application of machine learning algorithms with and without principal component analysis for the design of new multiphase high entropy alloys. Metall Mater Trans A 2022;53:3512-9.

133. Jackson K, Hunt J. Lamellar and rod eutectic growth. dynamics of curved fronts. Elsevier; 1988. pp. 363-76.

134. Zhang Y, Wen C, Wang C, et al. Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models. Acta Mater 2020;185:528-39.

135. Yan Y, Lu D, Wang K. Accelerated discovery of single-phase refractory high entropy alloys assisted by machine learning. Comput Mater Sci 2021;199:110723.

136. Kaufmann K, Vecchio KS. Searching for high entropy alloys: a machine learning approach. Acta Mater 2020;198:178-222.

137. Xiong J, Shi S, Zhang T. Machine learning of phases and mechanical properties in complex concentrated alloys. J Mater Sci Technol 2021;87:133-42.

138. Bobbili R, Ramakrishna B, Madhu V. Development of machine learning based models for design of high entropy alloys. Mater Technol 2022;37:2580-7.

139. Mandal P, Choudhury A, Mallick AB, Ghosh M. Phase prediction in high entropy alloys by various machine learning modules using thermodynamic and configurational parameters. Met Mater Int 2023;29:38-52.

140. Wang C, Zhong W, Zhao J. Insights on phase formation from thermodynamic calculations and machine learning of 2436 experimentally measured high entropy alloys. J Alloys Compd 2022;915:165173.

141. Zeng Y, Man M, Bai K, Zhang Y. Revealing high-fidelity phase selection rules for high entropy alloys: a combined CALPHAD and machine learning study. Mater Des 2021;202:109532.

142. Nassar A, Mullis A. Rapid screening of high-entropy alloys using neural networks and constituent elements. Comput Mater Sci 2021;199:110755.

143. Schmidt J, Marques MRG, Botti S, Marques MAL. Recent advances and applications of machine learning in solid-state materials science. NPJ Comput Mater 2019:5.

144. Pei Z, Yin J, Hawk JA, Alman DE, Gao MC. Machine-learning informed prediction of high-entropy solid solution formation: beyond the Hume-Rothery rules. NPJ Comput Mater 2020:6.

145. Qu N, Liu Y, Zhang Y, et al. Machine learning guided phase formation prediction of high entropy alloys. Mater Today Commun 2022;32:104146.

146. Bundela AS, Rahul M. Machine learning-enabled framework for the prediction of mechanical properties in new high entropy alloys. J Alloys Compd 2022;908:164578.

147. Yang C, Ren C, Jia Y, Wang G, Li M, Lu W. A machine learning-based alloy design system to facilitate the rational design of high entropy alloys with enhanced hardness. Acta Mater 2022;222:117431.

148. Tao Q, Xu P, Li M, Lu W. Machine learning for perovskite materials design and discovery. NPJ Comput Mater 2021:7.

149. Zhang L, Chen H, Tao X, et al. Machine learning reveals the importance of the formation enthalpy and atom-size difference in forming phases of high entropy alloys. Mater Des 2020;193:108835.

150. Chanda B, Jana PP, Das J. A tool to predict the evolution of phase and Young’s modulus in high entropy alloys using artificial neural network. Comput Mater Sci 2021;197:110619.

151. Jain R, Dewangan SK, Kumar V, Samal S. Artificial neural network approach for microhardness prediction of eight component FeCoNiCrMnVAlNb eutectic high entropy alloys. Mater Sci Eng A 2020;797:140059.

152. Li J, Xie B, Fang Q, Liu B, Liu Y, Liaw PK. High-throughput simulation combined machine learning search for optimum elemental composition in medium entropy alloy. J Mater Sci Technol 2021;68:70-5.

153. Kumar A, Goel S, Sinha N, Bhardwaj A. A review on unbalanced data classification. In: Uddin MS, Jamwal PK, Bansal JC, editors. Proceedings of International Joint Conference on Advances in Computational Intelligence. Singapore: Springer Nature; 2022. pp. 197-208.

154. Chawla N V, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 2002;16:321-57.

155. Tomek I. Tomek link: two modifications of CNN. IEEE Trans Syst Man Cybern 1976;SMC-6:769-772.

156. Lin KB, Weng W, Lai RK, Lu P. Imbalance data classification algorithm based on SVM and clustering function. Proc 9th Int Conf Comput Sci Educ ICCCSE 2014 2014:544-8.

157. Moreno-Torres JG, Herrera F. A preliminary study on overlapping and data fracture in imbalanced domains by means of genetic programming-based feature extraction. Proc 2010 10th Int Conf Intell Syst Des Appl ISDA’10 2010:501-6.

158. Bhowan U, Jahnston M, Zhang M. Developing new fitness functions in genetic programming for classification with unbalanced data. IEEE Trans Syst Man Cybern Part B 2012;42:406-21.

159. Pei Z, Rozman KA, Doğan ÖN, et al. Machine-learning microstructure for inverse material design. Adv Sci 2021;8:e2101207.

160. Lee SY, Byeon S, Kim HS, Jin H, Lee S. Deep learning-based phase prediction of high-entropy alloys: optimization, generation, and explanation. Mater Des 2021;197:109260.

161. Wu X, Zhu Y. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett 2017;5:527-32.

162. Zhu Y, Wu X. Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater Res Lett 2019;7:393-8.

163. Sathiyamoorthi P, Kim HS. High-entropy alloys with heterogeneous microstructure: Processing and mechanical properties. Prog Mater Sci 2022;123:100709.

164. Gwalani B, Gangireddy S, Zheng Y, Soni V, Mishra RS, Banerjee R. Influence of ordered L1(2) precipitation on strain-rate dependent mechanical behavior in a eutectic high entropy alloy. Sci Rep 2019;9:6371.

165. Yang Z, Wang Z, Wu Q, et al. Enhancing the mechanical properties of casting eutectic high entropy alloys with Mo addition. Appl Phys A 2019:125.

166. Lu Y, Gao X, Jiang L, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater 2017;124:143-50.

167. Ma L, Wang J, Jin P. Microstructure and mechanical properties variation with Ni content in Al0.8CoCr0.6Fe0.7Nix (x = 1.1, 1.5, 1.8, 2.0) eutectic high-entropy alloy system. Mater Res Express 2020;7:016566.

168. Wu Q, Wang Z, Zheng T, et al. A casting eutectic high entropy alloy with superior strength-ductility combination. Mater Lett 2019;253:268-71.

169. Liu Q, Liu X, Fan X, et al. Designing novel AlCoCrNi eutectic high entropy alloys. J Alloys Compd 2022;904:163775.

170. Dong Y, Yao Z, Huang X, et al. Microstructure and mechanical properties of AlCoxCrFeNi3-x eutectic high-entropy-alloy system. J Alloys Compd 2020;823:153886.

171. Jin X, Bi J, Zhang L, et al. A new CrFeNi2Al eutectic high entropy alloy system with excellent mechanical properties. J Alloys Compd 2019;770:655-61.

172. Shi P, Li R, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys. Science 2021;373:912-8.

173. Li Y, Shi P, Wang M, et al. Unveiling microstructural origins of the balanced strength-ductility combination in eutectic high-entropy alloys at cryogenic temperatures. Mater Res Lett 2022;10:602-10.

174. An Z, Mao S, Liu Y, et al. Inherent and multiple strain hardening imparting synergistic ultrahigh strength and ductility in a low stacking faulted heterogeneous high-entropy alloy. Acta Mater 2023;243:118516.

175. Huang L, Sun Y, Chen N, et al. Simultaneously enhanced strength-ductility of AlCoCrFeNi2.1 eutectic high-entropy alloy via additive manufacturing. Mater Sci Eng A 2022;830:142327.

176. Chen X, Kong J, Li J, et al. High-strength AlCoCrFeNi2.1 eutectic high entropy alloy with ultrafine lamella structure via additive manufacturing. Mater Sci Eng A 2022;854:143816.

177. He F, Yang Z, Liu S, et al. Strain partitioning enables excellent tensile ductility in precipitated heterogeneous high-entropy alloys with gigapascal yield strength. Int J Plast 2021;144:103022.

178. Song SC, Moon J, Kim HS. Hetero-deformation-induced strengthening of multi-phase Cu-Fe-Mn medium entropy alloys by dynamic heterostructuring. Mater Sci Eng A 2021;799:140275.

179. Chen L, Zhao Y, Qin X. Some aspects of high manganese twinning-induced plasticity (TWIP) steel, a review. Acta Metall Sin 2013;26:1-15.

180. Shi P, Zhong Y, Li Y, et al. Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys. Mater Today 2020;41:62-71.

181. Laplanche G, Kostka A, Horst O, Eggeler G, George E. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater 2016;118:152-63.

182. Diao H, Feng R, Dahmen K, Liaw P. Fundamental deformation behavior in high-entropy alloys: an overview. Curr Opin Solid State Mater Sci 2017;21:252-66.

183. Wu SW, Wang G, Yi J, et al. Strong grain-size effect on deformation twinning of an Al0.1CoCrFeNi high-entropy alloy. Mater Res Lett 2017;5:276-83.

184. Liu S, Wu Y, Wang H, et al. Transformation-reinforced high-entropy alloys with superior mechanical properties via tailoring stacking fault energy. J Alloys Compd 2019;792:444-55.

185. Li Z, Chen L, Fu P, Su H, Dai P, Tang Q. The effect of Si addition on the heterogeneous grain structure and mechanical properties of CrCoNi medium entropy alloy. Mater Sci Eng A 2022;852:143655.

186. Liu X, Ding H, Huang Y, et al. Evidence for a phase transition in an AlCrFe2Ni2 high entropy alloy processed by high-pressure torsion. J Alloys Compd 2021;867:159063.

187. Wu Q, He F, Li J, Kim HS, Wang Z, Wang J. Phase-selective recrystallization makes eutectic high-entropy alloys ultra-ductile. Nat Commun 2022;13:4697.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/