REFERENCES
1. Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries. Chem Rev 2014;114:11636-82.
2. Morita R, Gotoh K, Kubota K, et al. Correlation of carbonization condition with metallic property of sodium clusters formed in hard carbon studied using 23Na nuclear magnetic resonance. Carbon 2019;145:712-5.
3. Morita R, Gotoh K, Fukunishi M, et al. Combination of solid state NMR and DFT calculation to elucidate the state of sodium in hard carbon electrodes. J Mater Chem A 2016;4:13183-93.
4. Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv 2016:1609.02907.
5. Kwon Y, Lee D, Choi YS, Kang M, Kang S. Neural message passing for NMR chemical shift prediction. J Chem Inf Model 2020;60:2024-30.
6. Schütt KT, Arbabzadah F, Chmiela S, Müller KR, Tkatchenko A. Quantum-chemical insights from deep tensor neural networks. Nat Commun 2017;8:13890.
7. Schütt KT, Sauceda HE, Kindermans PJ, Tkatchenko A, Müller KR. SchNet - a deep learning architecture for molecules and materials. J Chem Phys 2018;148:241722.
8. Zhai H, Alexandrova AN. Ensemble-average representation of pt clusters in conditions of catalysis accessed through GPU accelerated deep neural network fitting global optimization. J Chem Theory Comput 2016;12:6213-26.
9. Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 16. Gaussian Inc.: Wallingford, USA; 2016.
10. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter 1988;37:785-9.
11. Zhao Y, Schultz NE, Truhlar DG. Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2006;2:364-82.
12. Santosa F, Symes WW. Linear inversion of band-limited reflection seismograms. SIAM J Sci Stat Comput 1986;7:1307-30.
13. Schütt KT, Kessel P, Gastegger M, Nicoli KA, Tkatchenko A, Müller KR. SchNetPack: a deep learning toolbox for atomistic systems. J Chem Theory Comput 2019;15:448-55.
14. Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv preprint arXiv ;2014:1412.6980.
15. Noya EG, Doye JP, Wales DJ, Aguado A. Geometric magic numbers of sodium clusters: Interpretation of the melting behaviour. Eur Phys J D 2007;43:57-60.
16. Sun WG, Wang JJ, Lu C, Xia XX, Kuang XY, Hermann A. Evolution of the structural and electronic properties of medium-sized sodium clusters: a honeycomb-like Na20 cluster. Inorg Chem 2017;56:1241-8.
17. Elstner M, Porezag D, Jungnickel G, et al. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B 1998;58:7260-8.
18. Frauenheim T, Seifert G, Elsterner M, et al. A self-consistent charge density-functional based tight-binding method for predictive materials simulations in physics, chemistry and biology. Physica Status Solidi 2000;217:41-62.
19. Oliveira LFL, Tarrat N, Cuny J, et al. Benchmarking density functional based tight-binding for silver and gold materials: from small clusters to bulk. J Phys Chem A 2016;120:8469-83.
21. Doye JP. Lead clusters: different potentials, different structures. Comput Mater Sci 2006;35:227-31.
22. Le Chen B, Sun WG, Kuang XY, et al. Structural stability and evolution of medium-sized tantalum-doped boron clusters: a half-sandwich-structured TaB12- cluster. Inorg Chem 2018;57:343-50.
23. Jin S, Chen B, Kuang X, et al. Structural and electronic properties of medium-sized aluminum-doped boron clusters AlB n and their anions. J Phys Chem C 2019;123:6276-83.
24. Sun W, Xia X, Lu C, Kuang X, Hermann A. Probing the structural and electronic properties of zirconium doped boron clusters: Zr distorted B12 ligand framework. Phys Chem Chem Phys 2018;20:23740-6.
25. Tian Y, Wei D, Jin Y, Barroso J, Lu C, Merino G. Exhaustive exploration of MgBn (n = 10-20) clusters and their anions. Phys Chem Chem Phys 2019;21:6935-41.