REFERENCES
1. Seifi M, Gorelik M, Waller J, et al. Progress towards metal additive manufacturing standardization to support qualification and certification. JoM 2017;69:439-55.
2. AMSC. Standardization roadmap for additive manufacturing, version 2.0; 2018. Available from: https://63.241.103.54/Shared%20Documents/%20Activities/AMSC/AMSC_Roadmap_June_2018.pdf [Last accessed on 23 Sep 2022]. Available from: https://share.ansi.org/Shared Documents/Standards Activities/AMSC/AMSC_Roadmap_June_2018.pdf.
3. AMSC. April 2022 Progress Report on AMSC Roadmap v2 Gaps; 2022. Available from: https://share.ansi.org/Shared Documents/Standards Activities/AMSC/April_2022_Progress_Report_AMSC_Roadmap_v2_Gaps.pdf[Last accessed on 23 Sep 2022].
4. Additive manufacturing-design-requirements, guidelines and recommendations. Geneva, CH: International Organization for Standardization; 2018.
5. Gu DD, Meiners W, Wissenbach K, Poprawe R. Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 2012;57:133-64.
6. Yap CY, Chua CK, Dong ZL, et al. Review of selective laser melting: materials and applications. Appl Phys Rev 2015;2:041101.
7. Svetlizky D, Das M, Zheng B, et al. Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications. Mater Today 2021;49:271-95.
8. Cunningham RW. Defect formation mechanisms in powder-bed metal additive manufacturing. Carnegie Mellon University; 2018.
9. Kim FH, Kim FH, Moylan SP. Literature review of metal additive manufacturing defects. US Department of Commerce, National Institute of Standards and Technology; 2018.
10. Brennan M, Keist J, Palmer T. Defects in metal additive manufacturing processes. J Mater Engin Perform 2021:1-11.
11. Carter LN, Wang X, Read N, et al. Process optimisation of selective laser melting using energy density model for nickel based superalloys. Mater Sci Techn 2016;32:657-61.
12. Fayazfar H, Salarian M, Rogalsky A, et al. A critical review of powder-based additive manufacturing of ferrous alloys: process parameters, microstructure and mechanical properties. Mater Des 2018;144:98-128.
14. Gong H, Rafi K, Gu H, et al. Influence of defects on mechanical properties of Ti-6Al-4 V components produced by selective laser melting and electron beam melting. Mater Des 2015;86:545-54.
15. Du Plessis A, Yadroitsava I, Yadroitsev I. Effects of defects on mechanical properties in metal additive manufacturing: A review focusing on X-ray tomography insights. Mater Des 2020;187:108385.
16. Kasperovich G, Haubrich J, Gussone J, Requena G. Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting. Mater Des 2016;105:160-70.
17. Snow Z, Nassar A, Reutzel EW. Review of the formation and impact of flaws in powder bed fusion additive manufacturing. Addit Manuf 2020:101457.
18. Li C, Liu Z, Fang X, Guo Y. Residual stress in metal additive manufacturing. Proced Cirp 2018;71:348-53.
19. Mercelis P, Kruth JP. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyping J 2006; doi: 10.1108/13552540610707013.
20. Denlinger ER, Heigel JC, Michaleris P. Residual stress and distortion modeling of electron beam direct manufacturing Ti-6Al-4V. Proc Instit Mechan Engin, Part B: J Engin Manuf 2015;229:1803-13.
21. Harrison NJ, Todd I, Mumtaz K. Reduction of micro-cracking in nickel superalloys processed by selective laser melting: a fundamental alloy design approach. Act Material 2015;94:59-68.
22. Bauereiß A, Scharowsky T, Körner C. Defect generation and propagation mechanism during additive manufacturing by selective beam melting. J Mater Proc Techn 2014;214:2522-8.
23. Chen F, Yan W. High-fidelity modelling of thermal stress for additive manufacturing by linking thermal-fluid and mechanical models. Mater Des 2020;196:109185.
24. Mukherjee T, Zhang W, DebRoy T. An improved prediction of residual stresses and distortion in additive manufacturing. Comput Mater Sci 2017;126:360-72.
25. Liang X, Chen Q, Cheng L, Hayduke D, To AC. Modified inherent strain method for efficient prediction of residual deformation in direct metal laser sintered components. Comput Mech 2019;64:1719-33.
26. Prabhakar P, Sames WJ, Dehoff R, Babu SS. Computational modeling of residual stress formation during the electron beam melting process for Inconel 718. Addit Manuf 2015;7:83-91.
27. Bartlett JL, Li X. An overview of residual stresses in metal powder bed fusion. Addit Manuf 2019;27:131-49.
28. Shiomi M, Osakada K, Nakamura K, Yamashita T, Abe F. Residual stress within metallic model made by selective laser melting process. CIRP ann 2004;53:195-8.
29. Kruth JP, Froyen L, Van Vaerenbergh J, et al. Selective laser melting of iron-based powder. J mater proc techn 2004;149:616-22.
30. Vrancken B, Buls S, Kruth JP, Van Humbeeck J. Influence of preheating and oxygen content on selective laser melting of Ti6Al4V. In: Proceedings of the 16th RAPDASA Conference; 2015. Available from: https://lirias.kuleuven.be/1748568?limo=0[Last accessed on 23 Sep 2022].
31. Roberts IA. Investigation of residual stresses in the laser melting of metal powders in additive layer manufacturing 2012. Available from: https://wlv.openrepository.com/handle/2436/254913[Last accessed on 23 Sep 2022]. Available from: https://wlv.openrepository.com/handle/2436/254913.
32. Ali H, Ma L, Ghadbeigi H, Mumtaz K. In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of selective laser melted Ti6Al4V. Mater Sci Engin: A 2017;695:211-20.
33. Corbin DJ, Nassar AR, Reutzel EW, Beese AM, Michaleris P. Effect of Substrate thickness and preheating on the distortion of laser deposited Ti-6Al-4V. J Manuf Sci Engin 2018:140.
34. Calta NP, Martin AA, Hammons JA, et al. Pressure dependence of the laser-metal interaction under laser powder bed fusion conditions probed by in situ X-ray imaging. Addit Manuf 2020;32:101084.
35. Wang L, Zhang Y, Chia HY, Yan W. Mechanism of keyhole pore formation in metal additive manufacturing. npj Comput Mater 2022;8:1-11.
36. Yan F, Xiong W, Faierson E, Olson GB. Characterization of nano-scale oxides in austenitic stainless steel processed by powder bed fusion. Script Mater 2018;155:104-8.
37. Haines MP, Peter NJ, Babu S, Jägle EA. In-situ synthesis of oxides by reactive process atmospheres during L-PBF of stainless steel. Addit Manuf 2020;33:101178.
38. Ikehata H, Mayweg D, Jägle E. Grain refinement of Fe-Ti alloys fabricated by laser powder bed fusion. Mater Des 2021;204:109665.
39. Shen H, Rometsch P, Wu X, Huang A. Influence of gas flow speed on laser plume attenuation and powder bed particle pickup in laser powder bed fusion. JoM 2020;72:1039-51.
40. Weaver J, Schlenoff A, Deisenroth D, et al. Inert gas flow speed measurements in laser powder bed fusion additive manufacturing 2021.
41. Caballero A, Suder W, Chen X, Pardal G, Williams S. Effect of shielding conditions on bead profile and melting behaviour in laser powder bed fusion additive manufacturing. Addit Manuf 2020;34:101342.
42. Reijonen J, Revuelta A, Riipinen T, Ruusuvuori K, Puukko P. On the effect of shielding gas flow on porosity and melt pool geometry in laser powder bed fusion additive manufacturing. Addit Manuf 2020;32:101030.
43. Bidare P, Bitharas I, Ward R, Attallah M, Moore AJ. Fluid and particle dynamics in laser powder bed fusion. Act Materi 2018;142:107-20.
44. Chen H, Yan W. Spattering and denudation in laser powder bed fusion process: multiphase flow modelling. Acta Material 2020;196:154-67.
45. Eo DR, Chung SG, Jeon JM, Cho JW. Melt pool oxidation and reduction in powder bed fusion. Addit Manuf 2021;41:101982.
46. Metelkova J, Kinds Y, Kempen K, et al. On the influence of laser defocusing in selective laser melting of 316L. Addit Manuf 2018;23:161-9.
47. Sow M, De Terris T, Castelnau O, et al. Influence of beam diameter on Laser Powder Bed Fusion (L-PBF) process. Addit Manuf 2020;36:101532.
48. Ladewig A, Schlick G, Fisser M, Schulze V, Glatzel U. Influence of the shielding gas flow on the removal of process by-products in the selective laser melting process. Addit Manuf 2016;10:1-9.
49. Anwar AB, Pham QC. Study of the spatter distribution on the powder bed during selective laser melting. Addit Manuf 2018;22:86-97.
50. Martin JH, Yahata BD, Hundley JM, et al. 3D printing of high-strength aluminium alloys. Nature 2017;549:365-69.
51. Yang Z, Wang S, Zhu L, et al. Manipulating molten pool dynamics during metal 3D printing by ultrasound. Appl Phys Rev 2022;9:021416.
52. AlMangour B, Baek MS, Grzesiak D, Lee KA. Strengthening of stainless steel by titanium carbide addition and grain refinement during selective laser melting. Mater Sci Engin: A 2018;712:812-8.
53. Ghayoor M, Mirzababaei S, Lee K, et al. Strengthening of 304L stainless steel by addition of yttrium oxide and grain refinement during selective laser melting. In: 2019 International Solid Freeform Fabrication Symposium. University of Texas at Austin; 2019.
54. Lin TC, Cao C, Sokoluk M, et al. Aluminum with dispersed nanoparticles by laser additive manufacturing. Nature Comm 2019;10:1-9.
55. Gao C, Wang Z, Xiao Z, et al. Selective laser melting of TiN nanoparticle-reinforced AlSi10Mg composite: microstructural, interfacial, and mechanical properties. J Mater Proc Techn 2020;281:116618.
56. Liu X, Liu Y, Zhou Z, et al. Grain refinement and crack inhibition of selective laser melted AA2024 aluminum alloy via inoculation with TiC-TiH2. Mater Sci Engin: A 2021;813:141171.
57. Zhai W, Zhou W, Nai SML. Grain refinement and strengthening of 316L stainless steel through addition of TiC nanoparticles and selective laser melting. Mater Sci Engin: A 2022;832:142460.
58. Xiao F, Wang S, Wang Y, et al. Niobium nanoparticle-enabled grain refinement of a crack-free high strength Al-Zn-Mg-Cu alloy manufactured by selective laser melting. J Alloys Compo 2022;900:163427.
59. Basariya MR, Srivastava V, Mukhopadhyay N. Microstructural characteristics and mechanical properties of carbon nanotube reinforced aluminum alloy composites produced by ball milling. Mater Des 2014;64:542-9.
60. Wang P, Zhang B, Tan CC, et al. Microstructural characteristics and mechanical properties of carbon nanotube reinforced Inconel 625 parts fabricated by selective laser melting. Mater Sci Techn 2016;112:290-9.
61. Wang Lz, Chen T, Wang S. Microstructural characteristics and mechanical properties of carbon nanotube reinforced AlSi10Mg composites fabricated by selective laser melting. Optik 2017;143:173-9.
62. Kao A, Gan T, Tonry C, Krastins I, Pericleous K. Thermoelectric magnetohydrodynamic control of melt pool dynamics and microstructure evolution in additive manufacturing. Phil Trans Royal Soci A 2020;378:20190249.
63. Wang L, Yan W. Thermoelectric magnetohydrodynamic model for laser-based metal additive manufacturing. Phys Rev Appl 2021;15:064051.
64. Lores A, Azurmendi N, Agote I, Zuza E. A review on recent developments in binder jetting metal additive manufacturing: materials and process characteristics. Powd Metall 2019;62:267-96.
65. Ziaee M, Crane NB. Binder jetting: a review of process, materials, and methods. Addit Manuf 2019;28:781-801.
66. Li M, Du W, Elwany A, Pei Z, Ma C. Metal binder jetting additive manufacturing: a literature review. J Manuf Sci Engin 2020:142.
67. Sun S, Brandt M, Easton M. Powder bed fusion processes: an overview. Laser addit manuf 2017:55-77.
68. Escano LI, Parab ND, Xiong L, et al. Revealing particle-scale powder spreading dynamics in powder-bed-based additive manufacturing process by high-speed x-ray imaging. Sci rep 2018;8:1-11.
69. Zhao C, Parab ND, Li X, et al. Critical instability at moving keyhole tip generates porosity in laser melting. Science 2020;370:1080-86.
70. Bitharas I, Parab N, Zhao C, et al. The interplay between vapour, liquid, and solid phases in laser powder bed fusion. Nat Comm 2022;13:1-12.
71. Sola A, Nouri A. Microstructural porosity in additive manufacturing: The formation and detection of pores in metal parts fabricated by powder bed fusion. J Adv Manuf Proc 2019;1:e10021.
72. Levkulich NC. An experimental investigation of residual stress development during selective laser melting of Ti-6Al-4V. Wright State University; 2017.
73. Chen Q, Liang X, Hayduke D, et al. An inherent strain based multiscale modeling framework for simulating part-scale residual deformation for direct metal laser sintering. Addit Manuf 2019;28:406-18.
74. Bertoli US, Wolfer AJ, Matthews MJ, Delplanque JPR, Schoenung JM. On the limitations of volumetric energy density as a design parameter for selective laser melting. Mater Des 2017;113:331-40.
75. Prashanth KG, Scudino S, Maity T, Das J, Eckert J. Is the energy density a reliable parameter for materials synthesis by selective laser melting? Mater Res Lett 2017;5:386-90.
76. Greco S, Gutzeit K, Hotz H, Kirsch B, Aurich JC. Selective laser melting (SLM) of AISI 316L—impact of laser power, layer thickness, and hatch spacing on roughness, density, and microhardness at constant input energy density. Int J Adv Manuf Techn 2020;108:1551-62.
77. Gu H, Gong H, Pal D, et al. Influences of energy density on porosity and microstructure of selective laser melted 17-4PH stainless steel. In: 2013 Solid Freeform Fabrication Symposium. vol. 474; 2013.
78. Liu Y, Liu C, Liu W, et al. Optimization of parameters in laser powder deposition AlSi10Mg alloy using Taguchi method. Opt Laser Techn 2019;111:470-80.
79. King WE, Barth HD, Castillo VM, et al. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J Mat Proc Techn 2014;214:2915-25.
80. Gan Z, Kafka OL, Parab N, et al. Universal scaling laws of keyhole stability and porosity in 3D printing of metals. Nat Comm 2021;12:1-8.
81. Rai R, Elmer J, Palmer T, DebRoy T. Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti-6Al-4V, 304L stainless steel and vanadium. J phys D: Appl phys 2007;40:5753.
82. Maamoun AH, Xue YF, Elbestawi MA, Veldhuis SC. Effect of selective laser melting process parameters on the quality of al alloy parts: Powder characterization, density, surface roughness, and dimensional accuracy. Materials 2018;11:2343.
83. Bayat M, Thanki A, Mohanty S, et al. Keyhole-induced porosities in Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-fidelity modelling and experimental validation. Add Manuf 2019;30:100835.
84. Cunningham R, Zhao C, Parab N, et al. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging. Science 2019;363:849-52.
85. Scime L, Beuth J. Melt pool geometry and morphology variability for the Inconel 718 alloy in a laser powder bed fusion additive manufacturing process. Addit Manuf 2019;29:100830.
86. Zhao C, Fezzaa K, Cunningham RW, et al. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction. Sci rep 2017;7:1-11.
87. Jadhav SD, Goossens LR, Kinds Y, Van Hooreweder B, Vanmeensel K. Laser-based powder bed fusion additive manufacturing of pure copper. Addit Manuf 2021;42:101990.
88. DebRoy T, Wei H, Zuback J, et al. Additive manufacturing of metallic components-process, structure and properties. Progr Mat Sci 2018;92:112-224.
89. Piglione A, Dovgyy B, Liu C, et al. Printability and microstructure of the CoCrFeMnNi high-entropy alloy fabricated by laser powder bed fusion. Materi Lett 2018;224:22-5.
90. Sun Z, Tan X, Tor SB, Chua CK. Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting. NPG Asia Mater 2018;10:127-36.
91. Sun Sh, Ishimoto T, Hagihara K, et al. Excellent mechanical and corrosion properties of austenitic stainless steel with a unique crystallographic lamellar microstructure via selective laser melting. Script Materi 2019;159:89-93.
92. Roehling TT, Shi R, Khairallah SA, et al. Controlling grain nucleation and morphology by laser beam shaping in metal additive manufacturing. Mater Des 2020;195:109071.
93. Kok Y, Tan XP, Wang P, et al. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: a critical review. Mater Des 2018;139:565-86.
94. Dilip J, Zhang S, Teng C, et al. Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting. Progr Addit Manuf 2017;2:157-67.
95. Pham MS, Dovgyy B, Hooper PA, Gourlay CM, Piglione A. The role of side-branching in microstructure development in laser powder-bed fusion. Nat Comm 2020;11:1-12.
96. Bustillos J, Kim J, Moridi A. Exploiting lack of fusion defects for microstructural engineering in additive manufacturing. Addit Manuf 2021;48:102399.
97. Körner C. Additive manufacturing of metallic components by selective electron beam melting—a review. Int Mater Rev 2016;61:361-77.
98. Gorsse S, Hutchinson C, Gouné M, Banerjee R. Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys. Sci Techn adv Mater 2017;18:584-610.
99. Wang YM, Voisin T, McKeown JT, et al. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat Mater 2018;17:63-71.
100. Zhang LC, Liu Y, Li S, Hao Y. Additive manufacturing of titanium alloys by electron beam melting: a review. Adv Engin Mater 2018;20:1700842.
101. Zhang Y, Wu L, Guo X, et al. Additive manufacturing of metallic materials: a review. J Mater Engin Perform 2018;27:1-13.
102. Moeinfar K, Khodabakhshi F, Kashani-bozorg S, Mohammadi M, Gerlich A. A review on metallurgical aspects of laser additive manufacturing (LAM): Stainless steels, nickel superalloys, and titanium alloys. J Mater Res Techn 2021; doi: 10.1016/j.jmrt.2021.12.039.
103. Guo L, Zhang L, Andersson J, Ojo O. Additive manufacturing of 18% nickel maraging steels: defect, structure and mechanical properties: A review. J Mater Sci Techn 2022; doi: 10.1016/j.jmst.2021.10.056.
104. Brandl E, Heckenberger U, Holzinger V, Buchbinder D. Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior. Mater Des 2012;34:159-69.
105. Spierings AB, Starr TL, Wegener K. Fatigue performance of additive manufactured metallic parts. Rapid Prototyping J 2013; doi: 10.1108/13552541311302932.
106. Ion JC, Shercliff HR, Ashby MF. Diagrams for laser materials processing. Acta Metall Et Mater 1992;40:1539-51.
107. Beuth J, Klingbeil N. The role of process variables in laser-based direct metal solid freeform fabrication. JoM 2001;53:36-9.
108. Beuth J, Fox J, Gockel J, et al. Process mapping for qualification across multiple direct metal additive manufacturing processes. In: Solid freeform fabrication proceedings. Univ. Tex. Austin; 2013. pp. 655–65.
109. Tran HC, Lo YL. Systematic approach for determining optimal processing parameters to produce parts with high density in selective laser melting process. Int J Adv Manuf Techn 2019;105:4443-60.
110. Johnson L, Mahmoudi M, Zhang B, et al. Assessing printability maps in additive manufacturing of metal alloys. Act Mater 2019;176:199-210.
111. Thomas M, Baxter GJ, Todd I. Normalised model-based processing diagrams for additive layer manufacture of engineering alloys. Acta Mater 2016;108:26-35.
112. Rubenchik AM, King WE, Wu SS. Scaling laws for the additive manufacturing. J Mater Proc Techn 2018;257:234-43.
113. Hann D, Iammi J, Folkes J. A simple methodology for predicting laser-weld properties from material and laser parameters. J Phys D: Appl Phys 2011;44:445401.
114. Wang Z, Liu M. Dimensionless analysis on selective laser melting to predict porosity and track morphology. J Mater Proc Techn 2019;273:116238.
115. Mukherjee T, Manvatkar V, De A, DebRoy T. Dimensionless numbers in additive manufacturing. J Appl Phys 2017;121:064904.
116. Van Elsen M, Al-Bender F, Kruth JP. Application of dimensional analysis to selective laser melting. Rapid Prot J 2008; doi: 10.1108/13552540810841526.
117. Mukherjee T, Zuback J, De A, DebRoy T. Printability of alloys for additive manufacturing. Sci rep 2016;6:1-8.
118. Tang M, Pistorius PC, Beuth JL. Prediction of lack-of-fusion porosity for powder bed fusion. Addit Manuf 2017;14:39-48.
119. Gordon JV, Narra SP, Cunningham RW, et al. Defect structure process maps for laser powder bed fusion additive manufacturing. Addit Manuf 2020;36:101552.
120. Zhang B, Seede R, Xue L, et al. An efficient framework for printability assessment in laser powder bed fusion metal additive manufacturing. Addit Manuf 2021:102018.
121. Spierings AB, Levy G. Comparison of density of stainless steel 316L parts produced with selective laser melting using different powder grades. In: Proceedings of the Annual International Solid Freeform Fabrication Symposium. Austin, TX; 2009. pp. 342–53.
122. Bidare P, Maier RRJ, Beck RJ, Shephard JD, Moore AJ. An open-architecture metal powder bed fusion system for in-situ process measurements. Addit Manuf 2017;16:177-85.
123. Jansen D, Hanemann T, Radek M, et al. Development of actual powder layer height depending on nominal layer thicknesses and selection of laser parameters. J Mater Proc Techn 2021;298:117305.
124. Ahn IH. Determination of a process window with consideration of effective layer thickness in SLM process. Int J Adv Manuf Techn 2019;105:4181-91.
125. Gockel J, Sheridan L, Koerper B, Whip B. The influence of additive manufacturing processing parameters on surface roughness and fatigue life. Int J Fat 2019;124:380-88.
126. Qian C, Xu H, Zhong Q. The influence of process parameters on corrosion behavior of Ti6Al4V alloy processed by selective laser melting. J Laser Appl 2020;32:032010.
127. Vukkum V, Gupta R. Review on corrosion performance of laser powder-bed fusion printed 316L stainless steel: effect of processing parameters, Manufacturing defects, post-processing, feedstock, and microstructure. Mater Des 2022:110874.
128. McGregor M, Patel S, McLachlin S, Vlasea M. Architectural bone parameters and the relationship to titanium lattice design for powder bed fusion additive manufacturing. Addit Manufact 2021;47:102273.
129. Blakey-Milner B, Gradl P, Snedden, et al. Metal additive manufacturing in aerospace: a review. Mater Des 2021;209:110008.
130. Vasco JC. Additive manufacturing for the automotive industry. In: Addit Manuf. Elsevier; 2021. pp. 505–30.
131. Elsayed M, Ghazy M, Youssef Y, Essa K. Optimization of SLM process parameters for Ti6Al4V medical implants. Rapid Prot J 2019; doi: 10.1108/RPJ-05-2018-0112.
132. Yang Y, Lu Jb, Luo ZY, Wang D. Accuracy and density optimization in directly fabricating customized orthodontic production by selective laser melting. Rap Prot J 2012; doi: 10.1108/13552541211272027.
133. Rej R. NIST/SEMATECH e-handbook of statistical methods; 2003. DOI: https://hdl.handle.net/2152/89963.
134. Sun J, Yang Y, Wang D. Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method. Opt Laser Techn 2013;49:118-24.
135. Yakout M, Elbestawi M, Veldhuis SC. Density and mechanical properties in selective laser melting of Invar 36 and stainless steel 316L. J Mater Proc Techn 2019;266:397-420.
136. Wang D, Liu Y, Yang Y, Xiao D. Theoretical and experimental study on surface roughness of 316L stainless steel metal parts obtained through selective laser melting. Rap Prot J 2016; doi: 10.1108/RPJ-06-2015-0078.
137. Wang C, Tan X, Liu E, Tor SB. Process parameter optimization and mechanical properties for additively manufactured stainless steel 316L parts by selective electron beam melting. Mater Des 2018;147:157-66.
138. Gong H, Gu H, Zeng K, et al. Melt pool characterization for selective laser melting of Ti-6Al-4V pre-alloyed powder. In: Solid freeform fabrication symposium; 2014. pp. 256–67.
139. Mutua J, Nakata S, Onda T, Chen ZC. Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel. Mater Des 2018;139:486-97.
140. Gong H, Rafi K, Gu H, Starr T, Stucker B. Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes. Addit Manuf 2014;1:87-98.
141. Bhardwaj T, Shukla M, Paul C, Bindra K. Direct energy deposition-laser additive manufacturing of titanium-molybdenum alloy: Parametric studies, microstructure and mechanical properties. J Alloys Comp 2019;787:1238-48.
142. Diaz Vallejo N, Lucas C, Ayers N, et al. Process optimization and microstructure analysis to understand laser powder bed fusion of 316L stainless steel. Metals 2021;11:832.
143. Dong D, Chang C, Wang H, et al. Selective laser melting (SLM) of CX stainless steel: theoretical calculation, process optimization and strengthening mechanism. J Mater Sci Techn 2021;73:151-64.
144. Oyesola M, Mpofu K, Mathe N, et al. Optimization of selective laser melting process parameters for surface quality performance of the fabricated Ti6Al4V. Int J Adv Manuf Techn 2021;114:1585-99.
145. Shrestha S, Manogharan G. Optimization of binder jetting using Taguchi method. JoM 2017;69:491-97.
146. Chen H, Zhao YF. Process parameters optimization for improving surface quality and manufacturing accuracy of binder jetting additive manufacturing process. Rap Prot J 2016;22:527-38.
147. Sobester A, Forrester A, Keane A. Engineering design via surrogate modelling: a practical guide. John Wiley & Sons; 2008.
148. Thomas DS, Gilbert SW. Costs and cost effectiveness of additive manufacturing. NIST Spec Public 2014;1176:12.
149. Dada M, Popoola P, Aramide O, Mathe N, Pityana S. Optimization of the corrosion property of a high entropy alloy using response surface methodology. Mater Today: Proc 2021;38:1024-30.
150. Dowling L, Kennedy J, O'shaughnessy S, Trimble D. A review of critical repeatability and reproducibility issues in powder bed fusion. Mat Des 2020;186:108346.
151. Aboutaleb AM, Bian L, Elwany A, et al. Accelerated process optimization for laser-based additive manufacturing by leveraging similar prior studies. ⅡSE Trans 2017;49:31-44.
152. Plotkowski A, Kirka MM, Babu S. Verification and validation of a rapid heat transfer calculation methodology for transient melt pool solidification conditions in powder bed metal additive manufacturing. Addit Manuf 2017;18:256-68.
153. Wang L, Zhang Y, Yan W. Evaporation model for keyhole dynamics during additive manufacturing of metal. Phys Rev Appl 2020;14:064039.
154. Yang M, Wang L, Yan W. Phase-field modeling of grain evolutions in additive manufacturing from nucleation, growth, to coarsening. Npj Comput Mater 2021;7:1-12.
155. Grilli N, Hu D, Yushu D, Chen F, Yan W. Crystal plasticity model of residual stress in additive manufacturing using the element elimination and reactivation method. Comput Mech 2021:1-21.
156. Yadollahi A, Shamsaei N. Additive manufacturing of fatigue resistant materials: challenges and opportunities. Int J Fat 2017;98:14-31.
157. Yang Y, Allen M, London T, Oancea V. Residual strain predictions for a powder bed fusion Inconel 625 single cantilever part. Int Mater Manuf Innov 2019;8:294-304.
158. Li C, Liu J, Fang X, Guo Y. Efficient predictive model of part distortion and residual stress in selective laser melting. Addit Manuf 2017;17:157-68.
159. Qu M, Guo Q, Escano LI, et al. Controlling process instability for defect lean metal additive manufacturing. Nat Comm 2022;13:1-8.
160. Markl M, Körner C. Multiscale modeling of powder bed-based additive manufacturing. Ann Rev Mater Res 2016;46:93-123.
161. Wei H, Mukherjee T, Zhang W, et al. Mechanistic models for additive manufacturing of metallic components. Progr Mater Sci 2021;116:100703.
162. Kouraytem N, Li X, Tan W, Kappes B, Spear AD. Modeling process-structure-property relationships in metal additive manufacturing: a review on physics-driven versus data-driven approaches. J Phys: Mater 2021;4:032002.
163. Promoppatum P, Yao SC, Pistorius PC, Rollett AD. A comprehensive comparison of the analytical and numerical prediction of the thermal history and solidification microstructure of Inconel 718 products made by laser powder-bed fusion. Engineering 2017;3:685-94.
164. Yang X, Barrett RA, Harrison NM, Leen SB. A physically-based structure-property model for additively manufactured Ti-6Al-4V. Mater Des 2021;205:109709.
165. Khairallah SA, Anderson AT, Rubenchik A, King WE. Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Act Mater 2016;108:36-45.
166. Yan W, Qian Y, Ge W, Lin S, Liu WK, et al. Meso-scale modeling of multiple-layer fabrication process in selective electron beam melting: inter-layer/track voids formation. Mater Des 2018;141:210-19.
167. Jiang P, Zhou Q, Shao X. Surrogate model-based engineering design and optimization. Springer; 2020.
168. Tapia G, Khairallah S, Matthews M, King WE, Elwany A. Gaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316L stainless steel. Int J Adv Manuf Techn 2018;94:3591-603.
169. Aoyagi K, Wang H, Sudo H, Chiba A. Simple method to construct process maps for additive manufacturing using a support vector machine. Addit manuf 2019;27:353-62.
170. Wang C, Tan X, Tor S, Lim C. Machine learning in additive manufacturing: State-of-the-art and perspectives. Addit Manuf 2020;36:101538.
171. DebRoy T, Mukherjee T, Wei H, Elmer J, Milewski J. Metallurgy, mechanistic models and machine learning in metal printing. Nat Revi Mat 2020:1-21.
172. Meng L, McWilliams B, Jarosinski W, et al. Machine learning in additive manufacturing: a review. JoM 2020;72:2363-77.
173. Yeung H, Yang Z, Yan L. A meltpool prediction based scan strategy for powder bed fusion additive manufacturing. Addit Manuf 2020;35:101383.
174. Wang Z, Liu P, Xiao Y, et al. A data-driven approach for process optimization of metallic additive manufacturing under uncertainty. J Manuf Sci Engin 2019:141.
175. Mondal S, Gwynn D, Ray A, Basak A. Investigation of melt pool geometry control in additive manufacturing using hybrid modeling. Metals 2020;10:683.
176. Narayana PL, Kim JH, Lee J, et al. Optimization of process parameters for direct energy deposited Ti-6Al-4V alloy using neural networks. Int J Adv Manuf Techn 2021:1-15.
177. Nguyen DS, Park HS, Lee CM. Optimization of selective laser melting process parameters for Ti-6Al-4V alloy manufacturing using deep learning. J Manuf Proc 2020;55:230-5.
178. Kappes B, Moorthy S, Drake D, Geerlings H, Stebner A. Machine learning to optimize additive manufacturing parameters for laser powder bed fusion of Inconel 718. In: Proceedings of the 9th international symposium on superalloy 718 & derivatives: Energy, aerospace, and industrial applications. Springer; 2018. pp. 595–610.
179. Tapia G, Elwany AH, Sang H. Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models. Addit Manuf 2016;12:282-90.
180. Kamath C. Data mining and statistical inference in selective laser melting. Int J Adv Manuf Techn 2016;86:1659-77.
181. Meng L, Zhang J. Process design of laser powder bed fusion of stainless steel using a Gaussian process-based machine learning model. JoM 2020;72:420-8.
182. Williams CK, Rasmussen CE. Gaussian processes for machine learning. vol. 2. MIT press Cambridge, MA; 2006.
183. Goel T, Haftka RT, Shyy W, Queipo NV. Ensemble of surrogates. Struct Multidisc Optim 2007;33:199-216.
184. Wang GG, Shan S. Review of metamodeling techniques in support of engineering design optimization. J Mech Des Apr 2007;129:370-80.
185. An D, Kim NH, Choi JH. Practical options for selecting data-driven or physics-based prognostics algorithms with reviews. Reli Engin Syst Saf 2015;133:223-36.
186. Younis A, Dong Z. Trends, features, and tests of common and recently introduced global optimization methods. Engin Optimiz 2010;42:691-718.
187. Dong H, Li C, Song B, Wang P. Multi-surrogate-based differential evolution with multi-start exploration (MDEME) for computationally expensive optimization. Adv Engin Softw 2018;123:62-76.
188. Díaz-Manríquez A, Toscano G, Coello Coello CA. Comparison of metamodeling techniques in evolutionary algorithms. Soft Comp 2017;21:5647-63.
189. Jin R, Chen W, Simpson TW. Comparative studies of metamodelling techniques under multiple modelling criteria. Struct Mult Optim 2001;23:1-13.
190. Yadroitsev I, Krakhmalev P, Yadroitsava I, Johansson S, Smurov I. Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder. J Mater Proc Techn 2013;213:606-13.
191. Liu J, Song Y, Chen C, et al. Effect of scanning speed on the microstructure and mechanical behavior of 316L stainless steel fabricated by selective laser melting. Mater Des 2020;186:108355.
192. Leicht A, Fischer M, Klement U, Nyborg L, Hryha E. Increasing the productivity of laser powder bed fusion for stainless steel 316L through increased layer thickness. J Mater Engin Perf 2021;30:575-84.
193. Wu J, Zhang S, Sun J, Zhang C. Data-driven multi-objective optimization of laser welding parameters of 6061-T6 aluminum alloy. J Phys: Conf Ser 2021;apr; 1885:042007.
194. Zhang P, Zhang C, Liu L. Toughening 3D-printed Zr-based bulk metallic glass via synergistic defects engineering. Mater Res Lett 2022;10:377-84.
195. Coello CAC, Lamont GB, Van Veldhuizen DA, et al. Evolutionary algorithms for solving multi-objective problems. vol. 5. Springer; 2007.
197. Aboutaleb AM, Mahtabi MJ, Tschopp MA, Bian L. Multi-objective accelerated process optimization of mechanical properties in laser-based additive manufacturing: Case study on Selective Laser Melting (SLM) Ti-6Al-4V. J Manuf Proc 2019;38:432-44.
198. Padhye N, Deb K. Multi-objective optimisation and multi-criteria decision making in SLS using evolutionary approaches. Rapid Prot J 2011.
199. Yan J, Battiato I, Fadel GM. A mathematical model-based optimization method for Direct Metal Deposition of multimaterials. J Manuf Sci Engin 2017:139.
200. Strano G, Hao L, Everson R, Evans K. Multi-objective optimization of selective laser sintering processes for surface quality and energy saving. Proc Inst Mech Engin, Part B: J Engin Manuf 2011;225:1673-82.
201. Meng L, Zhao J, Lan X, Yang H, Wang Z. Multi-objective optimisation of bio-inspired lightweight sandwich structures based on selective laser melting. Virt Phys Prot 2020;15:106-19.
202. Li J, Hu J, Cao L, et al. Multi-objective process parameters optimization of SLM using the ensemble of metamodels. J Manuf Proc 2021;68:198-209.
203. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ. IEEE trans evolcomput 2002;6:182-97.
204. Asadollahi-Yazdi E, Gardan J, Lafon P. Multi-objective optimization approach in design for additive manufacturing for fused deposition modeling. Rapid Prot J 2019; doi: 10.1108/RPJ-07-2018-0186.
205. Wu J, Lian K, Deng Y, Jiang P, Zhang C. Multi-objective parameter optimization of fiber laser welding considering energy consumption and bead geometry. IEEE Trans Autom Sci Engin 2021:1-14.
206. Jiang P, Cao L, Zhou Q, et al. Optimization of welding process parameters by combining Kriging surrogate with particle swarm optimization algorithm. Int J Adv Manuf Techn 2016;86:2473-83.
207. Padhye N. Topology optimization of compliant mechanism using multi-objective particle swarm optimization. In: Proceedings of the 10th annual conference companion on genetic and evolutionary computation; 2008. pp. 1831–4.
208. Zhang Y, Wang S, Ji G. A comprehensive survey on particle swarm optimization algorithm and its applications. Math Probl Engin 2015:2015.
209. Aboutaleb AM, Tschopp MA, Rao PK, Bian L. Multi-objective accelerated process optimization of part geometric accuracy in additive manufacturing. J Manuf Sci Engin 2017:139.
210. Mukherjee T, DebRoy T. Printability of 316 stainless steel. Sci Techn Weld Join 2019;24:412-19.
211. Campagnoli MR, Galati M, Saboori A. On the processability of copper components via powder-based additive manufacturing processes: Potentials, challenges and feasible solutions. J Manuf Proc 2021;72:320-37.
212. Xie X, Bennett J, Saha S, et al. Mechanistic data-driven prediction of as-built mechanical properties in metal additive manufacturing. npj Comput Mater 2021;7:1-12.
213. Du Y, Mukherjee T, DebRoy T. Physics-informed machine learning and mechanistic modeling of additive manufacturing to reduce defects. Appl Mater Today 2021;24:101123.
214. Loh GH, Pei E, Harrison D, Monzón MD. An overview of functionally graded additive manufacturing. Add Manuf 2018;23:34-44.
215. Shi R, Khairallah SA, Roehling TT, et al. Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy. Acta Mater 2020;184:284-305.
216. Tey CF, Tan X, Sing SL, Yeong WY. Additive manufacturing of multiple materials by selective laser melting: Ti-alloy to stainless steel via a Cu-alloy interlayer. Addit Manuf 2020;31:100970.
217. Anstaett C, Seidel C, Reinhart G. Fabrication of 3D multi-material parts using laser-based powder bed fusion. In: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium; 2017. Available from: https://hdl.handle.net/2152/89963 [Last accessed on 22 Sep].