REFERENCES

1. Xiang XD, Sun X, Briceño G, et al. A combinatorial approach to materials discovery. Science 1995;268:1738-40.

2. Xiang X, Wang G, Zhang X, Xiang Y, Wang H. Individualized pixel synthesis and characterization of combinatorial materials chips. Engineering 2015;1:225-33.

3. Wang J, Yoo Y, Gao C, et al. Identification of a blue photoluminescent composite material from a combinatorial library. Science 1998;279:1712-4.

4. Zhao L, Zhou Y, Wang H, et al. High-throughput synthesis and characterization of a combinatorial materials library in bulk alloys. Metall Mater Trans A 2021;52:1159-68.

5. Liu Y, Hu Z, Suo Z, et al. High-throughput experiments facilitate materials innovation: a review. Sci China Technol Sci 2019;62:521-45.

6. Bligaard T, Jóhannesson GH, Ruban AV, Skriver HL, Jacobsen KW, Nørskov JK. Pareto-optimal alloys. Appl Phys Lett 2003;83:4527-9.

7. Reed R, Tao T, Warnken N. Alloys-by-design: application to nickel-based single crystal superalloys. Acta Mater 2009;57:5898-913.

8. Jong M, Chen W, Geerlings H, Asta M, Persson KA. A database to enable discovery and design of piezoelectric materials. Sci Data 2015;2:150053.

9. Ong SP, Wang L, Kang B, Ceder G. Li-Fe-P-O2 phase diagram from first principles calculations. Chem Mater 2008;20:1798-807.

10. Ong SP, Richards WD, Jain A, et al. Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comput Mater Sci 2013;68:314-9.

11. Brun F, Yoshida T, Robson J, Narayan V, Bhadeshia H, Mackay D. Theoretical design of ferritic creep resistant steels using neural network, kinetic, and thermodynamic models. Mater Sci Technol 2013;15:547-54.

12. Sourmail T, Bhadeshia HKDH, Mackay DJC. Neural network model of creep strength of austenitic stainless steels. Mater Sci Technol 2013;18:655-63.

13. Joo M, Ryu J, Bhadeshia HKDH. Domains of steels with identical properties. Mater Manuf Process 2009;24:53-8.

14. Khalaj G, Nazari A, Pouraliakbar H. Prediction of martensite fraction of microalloyed steel by artificial neural networks. NNW 2013;23:117-30.

15. Khalaj G. Artificial neural network to predict the effects of coating parameters on layer thickness of chromium carbonitride coating on pre-nitrided steels. Neural Comput & Applic 2013;23:779-86.

16. Faizabadi MJ, Khalaj G, Pouraliakbar H, Jandaghi MR. Predictions of toughness and hardness by using chemical composition and tensile properties in microalloyed line pipe steels. Neural Comput & Applic 2014;25:1993-9.

17. Pouraliakbar H, Khalaj M, Nazerfakhari M, Khalaj G. Artificial neural networks for hardness prediction of HAZ with chemical composition and tensile test of X70 pipeline steels. J Iron Steel Res Int 2015;22:446-50.

18. Narimani N, Zarei B, Pouraliakbar H, Khalaj G. Predictions of corrosion current density and potential by using chemical composition and corrosion cell characteristics in microalloyed pipeline steels. Measurement 2015;62:97-107.

19. Conduit B, Jones N, Stone H, Conduit G. Design of a nickel-base superalloy using a neural network. Mater Des 2017;131:358-65.

20. Conduit B, Jones N, Stone H, Conduit G. Probabilistic design of a molybdenum-base alloy using a neural network. Scr Mater 2018;146:82-6.

21. Conduit B, Illston T, Baker S, et al. Probabilistic neural network identification of an alloy for direct laser deposition. Mater Des 2019;168:107644.

22. Islam N, Huang W, Zhuang HL. Machine learning for phase selection in multi-principal element alloys. Comput Mater Sci 2018;150:230-5.

23. Arisoy YM, Özel T. Machine learning based predictive modeling of machining induced microhardness and grain size in Ti-6Al-4V alloy. Mater Manuf Process 2014;30:425-33.

24. Khalaj G, Pouraliakbar H. Computer-aided modeling for predicting layer thickness of a duplex treated ceramic coating on tool steels. Ceram Int 2014;40:5515-22.

25. Isayev O, Oses C, Toher C, Gossett E, Curtarolo S, Tropsha A. Universal fragment descriptors for predicting properties of inorganic crystals. Nat Commun 2017;8:15679.

26. de Jong M, Chen W, Notestine R, et al. A statistical learning framework for materials science: application to elastic moduli of k-nary inorganic polycrystalline compounds. Sci Rep 2016;6:34256.

27. Correa-baena J, Hippalgaonkar K, van Duren J, et al. Accelerating materials development via automation, machine learning, and high-performance computing. Joule 2018;2:1410-20.

28. Cantor B, Chang I, Knight P, Vincent A. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A 2004;375-377:213-8.

29. Yeh J, Chen S, Lin S, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 2004;6:299-303.

30. Ranganathan S. Alloyed pleasures: multimetallic cocktails. Curr Sci 2003;85:1404-6.

31. Fazakas É, Zadorozhnyy V, Varga L, et al. Experimental and theoretical study of Ti20Zr20Hf20Nb20X20 (X=V or Cr) refractory high-entropy alloys. Int J Refract Metals Hard Mater 2014;47:131-8.

32. Liu Y, Zhang Y, Zhang H, et al. Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Six high-entropy composites. J Alloys Compd 2017;694:869-76.

33. Chang C, Titus MS, Yeh J. Oxidation Behavior between 700 and 1300 °C of refractory TiZrNbHfTa high-entropy alloys containing aluminum. Adv Eng Mater 2018;20:1700948.

34. Cao P, Ni X, Tian F, Varga LK, Vitos L. Ab initio study of AlxMoNbTiV high-entropy alloys. J Phys Condens Matter 2015;27:075401.

35. Senkov O, Wilks G, Miracle D, Chuang C, Liaw P. Refractory high-entropy alloys. Intermetallics 2010;18:1758-65.

36. Senkov O, Wilks G, Scott J, Miracle D. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 2011;19:698-706.

37. Zou Y, Ma H, Spolenak R. Ultrastrong ductile and stable high-entropy alloys at small scales. Nat Commun 2015;6:7748.

38. Wu Y, Cai Y, Chen X, et al. Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys. Mater Des 2015;83:651-60.

39. Melnick A, Soolshenko V. Thermodynamic design of high-entropy refractory alloys. J Alloys Compd 2017;694:223-7.

40. Han Z, Luan H, Liu X, et al. Microstructures and mechanical properties of Ti NbMoTaW refractory high-entropy alloys. Materials Science and Engineering: A 2018;712:380-5.

41. Zhang W, Liaw PK, Zhang Y. Science and technology in high-entropy alloys. Sci China Mater 2018;61:2-22.

42. Dasari S, Chaudhary V, Gwalani B, et al. Highly tunable magnetic and mechanical properties in an Al0.3CoFeNi complex concentrated alloy. Materialia 2020;12:100755.

43. Chaudhary V, Chaudhary R, Banerjee R, Ramanujan R. Accelerated and conventional development of magnetic high entropy alloys. Mater Today 2021;49:231-52.

44. Sun Y, Lu Z, Liu X, et al. Prediction of Ti-Zr-Nb-Ta high-entropy alloys with desirable hardness by combining machine learning and experimental data. Appl Phys Lett 2021;119:201905.

45. Wen C, Wang C, Zhang Y, et al. Modeling solid solution strengthening in high entropy alloys using machine learning. Acta Mater 2021;212:116917.

46. MTI Corporation. Available from: https://www.mtixtl.com/ [Last accessed on 23 Mar 2022].

47. Kube SA, Sohn S, Uhl D, Datye A, Mehta A, Schroers J. Phase selection motifs in High Entropy Alloys revealed through combinatorial methods: Large atomic size difference favors BCC over FCC. Acta Mater 2019;166:677-86.

48. Gao MC, Yeh JW, Liaw PK, Zhang Y. High-entropy alloys: fundamentals and applications. Switzerland: Springer International Publishing; 2016.

49. Müller KR, Mika S, Rätsch G, Tsuda K, Schölkopf B. An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw 2001;12:181-201.

50. Chang C, Lin C. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2011;2:1-27.

51. Breiman L. Random forests. Mach Learn 2001;45:5-32.

52. Scikit-learn in Python. Available from: https://scikit-learn.org/stable/ [Last accessed on 23 Mar 2022].

53. Zhang Y, Zhou Y, Lin J, Chen G, Liaw P. Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater 2008;10:534-8.

54. Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys 2012;132:233-8.

55. Guo S, Ng C, Lu J, Liu CT. Effect of valence electron concentration on stability of FCC or BCC phase in high entropy alloys. J Appl Phys 2011;109:103505.

56. Database on properties of chemical elements. Available from: http://phases.imet-db.ru/elements/main.aspx [Last accessed on 23 Mar 2022].

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/