REFERENCES
1. Kaufman JG, Rooy EL. Aluminum alloy castings: properties, processes, and applications. Asm International; 2004.
2. Hirsch J. Recent development in aluminium for automotive applications. Trans Nonferrous Met Soc China 2014;24:1995-2002.
3. Kelly JC, Sullivan JL, Burnham A, Elgowainy A. Impacts of vehicle weight reduction via material substitution on life-cycle greenhouse gas emissions. Environ Sci Technol 2015;49:12535-42.
4. Rams J, Torres B. Casting aluminum alloys. Encyclopedia of materials: metals and alloys. Elsevier; 2022. pp. 123-31.
5. Zolotorevsky VS, Belov NA, Glazoff M V. Casting Aluminum Alloys. Elsevier; 2007.
6. Javidani M, Larouche D. Application of cast Al-Si alloys in internal combustion engine components. Int Mater Rev 2014;59:132-58.
7. Zamani M, Seifeddine S. Determination of optimum Sr level for eutectic Si modification in Al-Si cast alloys using thermal analysis and tensile properties. Inter Metalcast 2016;10:457-65.
8. Fernández-lópez P, Alves S, López-ortega A, San José-lombera J, Bayón R. High performance tribological coatings on a secondary cast Al-Si alloy generated by Plasma Electrolytic Oxidation. Ceram Int 2021;47:31238-50.
9. Jie J, Zou C, Wang H, Li B, Wei Z. Enhancement of mechanical properties of Al-Mg alloy with a high Mg content solidified under high pressures. Scr Mater 2011;64:588-91.
10. Jie J, Zou C, Brosh E, Wang H, Wei Z, Li T. Microstructure and mechanical properties of an Al-Mg alloy solidified under high pressures. J Alloys Compd 2013;578:394-404.
11. Jie J, Zou C, Wang H, Wei Z, Li T. Thermal stability of Al-Mg alloys after solidification under high pressures. J Alloys Compd 2014;584:507-13.
12. Yang B, Wang Y, Gao M, Guan R. The response of mechanical property to the microstructure variation of an Al-Mg alloy by adding tin element. Mater Sci Eng A 2021;825:141901.
13. Zhao Q, Zhang Q, Zhang W, Qiu F, Jiang Q. Improved ductility and toughness of an Al-Cu casting alloy by changing the geometrical morphology of dendritic grains. Mater Lett 2018;214:276-9.
14. Li Q, Zhang Y, Zhang X, et al. Microstructure evolution and nano-phases strengthening of Al-5%Cu alloy by adding trace AlSiTiCrNiCu high entropy alloy. Mater Charact 2021;175:111100.
15. Shin S, Lim K, Park I. Characteristics and microstructure of newly designed Al-Zn-based alloys for the die-casting process. J Alloys Compd 2016;671:517-26.
16. Mishra RR, Sharma AK. Structure-property correlation in Al-Zn-Mg alloy cast developed through in-situ microwave casting. Mater Sci Eng A 2017;688:532-44.
17. Liu C, Garner A, Zhao H, et al. CALPHAD-informed phase-field modeling of grain boundary microchemistry and precipitation in Al-Zn-Mg-Cu alloys. Acta Mater 2021;214:116966.
19. Tang Y, Li Y, Zhao W, Roslyakova I, Zhang L. Thermodynamic descriptions of quaternary Mg-Al-Zn-Bi system supported by experiments and their application in descriptions of solidification behavior in Bi-additional AZ casting alloys. J Magnes Alloy 2020;8:1238-52.
20. Wang T, Yang L, Tang Z, et al. Effect of aging treatment on microstructure, mechanical and corrosion properties of 7055 aluminum alloy prepared using powder by-product. Mater Sci Eng A 2021;822:141606.
21. Lavernia EJ, Srivatsan TS. The rapid solidification processing of materials: science, principles, technology, advances, and applications. J Mater Sci 2010;45:287-325.
22. Tong X, Zhang D, Wang K, et al. Microstructure and mechanical properties of high-pressure-assisted solidification of in situ Al-Mg2 Si composites. Mater Sci Eng A 2018;733:9-15.
23. Qi M, Kang Y, Li J, et al. Microstructures refinement and mechanical properties enhancement of aluminum and magnesium alloys by combining distributary-confluence channel process for semisolid slurry preparation with high pressure die-casting. J Mater Process Technol 2020;285:116800.
24. Yang H, Zhang Y, Wang J, Liu Z, Liu C, Ji S. Additive manufacturing of a high strength Al-5Mg2Si-2Mg alloy: Microstructure and mechanical properties. J Mater Sci Technol 2021;91:215-23.
25. Weiss D. Advances in the Sand Casting of Aluminium Alloys. Fundamentals of Aluminium Metallurgy. Elsevier; 2018. pp. 159-71.
26. Xiao G, Jiang J, Liu Y, Wang Y, Guo B. Recrystallization and microstructure evolution of hot extruded 7075 aluminum alloy during semi-solid isothermal treatment. Mater Charact 2019;156:109874.
27. Lu L, Nogita K, Dahle A. Combining Sr and Na additions in hypoeutectic Al-Si foundry alloys. Mater Sci Eng A 2005;399:244-53.
28. Ganesh MRS, Reghunath N, J. levin M, Prasad A, Doondi S, Shankar KV. Strontium in Al-Si-Mg alloy: a review. Met Mater Int 2021; doi: 10.1007/s12540-021-01054-y.
29. Wu Y, Zhang J, Liao H, Li G, Wu Y. Development of high performance near eutectic Al-Si-Mg alloy profile by micro alloying with Ti. J Alloys Compd 2016;660:141-7.
30. Li Y, Hu B, Liu B, et al. Insight into Si poisoning on grain refinement of Al-Si/Al-5Ti-B system. Acta Mater 2020;187:51-65.
31. Zhao C, Li Y, Xu J, et al. Enhanced grain refinement of Al-Si alloys by novel Al-V-B refiners. J Mater Sci Technol 2021;94:104-12.
32. Li Y, Jiang Y, Liu B, Luo Q, Hu B, Li Q. Understanding grain refining and anti Si-poisoning effect in Al-10Si/Al-5Nb-B system. J Mater Sci Technol 2021;65:190-201.
33. Liu G, Blake P, Ji S. Effect of Zr on the high cycle fatigue and mechanical properties of Al-Si-Cu-Mg alloys at elevated temperatures. J Alloys Compd 2019;809:151795.
34. Lu Z, Li X, Zhang L. Thermodynamic description of Al-Si-Mg-Ce quaternary system in Al-rich corner and its experimental validation. J Phase Equilib Diffus 2018;39:57-67.
35. Li JH, Ludwig TH, Oberdorfer B, Schumacher P. Solidification behaviour of Al-Si based alloys with controlled additions of Eu and P. Int J Cast Met Res 2018;31:319-31.
36. Zhang J, Gao Y, Yang C, et al. Microalloying Al alloys with Sc: a review. Rare Met 2020;39:636-50.
37. Zhang X, Huang L, Zhang B, et al. Enhanced strength and ductility of A356 alloy due to composite effect of near-rapid solidification and thermo-mechanical treatment. Mater Sci Eng A 2019;753:168-78.
38. Zhang X, Huang LK, Zhang B, Chen YZ, Liu F. Microstructural evolution and strengthening mechanism of an Al-Si-Mg alloy processed by high-pressure torsion with different heat treatments. Mater Sci Eng A 2020;794:139932.
39. Zhou J, Zhong J, Chen L, et al. Phase equilibria, thermodynamics and microstructure simulation of metastable spinodal decomposition in c-Ti1-xAlxN coatings. Calphad 2017;56:92-101.
40. Fujinaga T, Watanabe Y, Shibuta Y. Nucleation dynamics in Al solidification with Al-Ti refiners by molecular dynamics simulation. Comput Mater Sci 2020;182:109763.
41. Tang Y, Du Y, Zhang L, Yuan X, Kaptay G. Thermodynamic description of the Al-Mg-Si system using a new formulation for the temperature dependence of the excess Gibbs energy. Thermochim Acta 2012;527:131-42.
42. Lu Z, Zhang L. Thermal stability and crystal structure of high-temperature compound Al13CeMg6. Intermetallics 2017;88:73-6.
43. Yang S, Zhong J, Wang J, Zhang L, Kaptay G. OpenIEC: an open-source code for interfacial energy calculation in alloys. J Mater Sci 2019;54:10297-311.
44. Zhong J, Chen W, Zhang L. HitDIC: A free-accessible code for high-throughput determination of interdiffusion coefficients in single solution phase. Calphad 2018;60:177-90.
45. Wu X, Zhong J, Zhang L. A general approach to quantify the uncertainty of interdiffusion coefficients in binary, ternary and multicomponent systems evaluated using Matano-based methods. Acta Mater 2020;188:665-76.
46. Ma S, Xing F, Deng C, Zhang L. A novel analytical approach to describe the simultaneous diffusional growth of multilayer stoichiometric compounds in binary reactive diffusion couples. Scr Mater 2021;191:111-5.
47. Ma S, Xing F, Ta N, Zhang L. Kinetic modeling of high-temperature oxidation of pure Mg. J Magnes Alloy 2020;8:819-31.
48. Zhong J, Chen L, Zhang L. High-throughput determination of high-quality interdiffusion coefficients in metallic solids: a review. J Mater Sci 2020:1-36.
49. Zhong J, Zhang L, Wu X, Chen L, Deng C. A novel computational framework for establishment of atomic mobility database directly from composition profiles and its uncertainty quantification. J Mater Sci Technol 2020;48:163-74.
50. Zhong J, Chen L, Zhang L. Automation of diffusion database development in multicomponent alloys from large number of experimental composition profiles. npj Comput Mater 2021;7:35.
51. Tang Q, Ma S, Xing F, Zhang L. Anisotropic atomic mobilities of hcp Zr(O) solid solution and their application in description of early-stage oxidation process of pure Zr. Corros Sci 2021;86:109445.
52. Wei M, Tang Y, Zhang L, Sun W, Du Y. Phase-field simulation of microstructure evolution in industrial A2214 alloy during solidification. Metall Mater Trans A 2015;46:3182-91.
53. Zhang L, Stratmann M, Du Y, Sundman B, Steinbach I. Incorporating the CALPHAD sublattice approach of ordering into the phase-field model with finite interface dissipation. Acta Mater 2015;88:156-69.
54. Wang K, Wei M, Zhang L, Du Y. Morphologies of primary silicon in hypereutectic Al-Si alloys: phase-field simulation supported by key experiments. Metall Mater Trans A 2016;47:1510-6.
55. Gao J, Wei M, Zhang L, Du Y, Liu Z, Huang B. Effect of different initial structures on the simulation of microstructure evolution during normal grain growth via phase-field modeling. Metall Mater Trans A 2018;49:6442-56.
56. Wang K, Zhang L. Quantitative phase-field simulation of the entire solidification process in one hypereutectic Al-Si alloy considering the effect of latent heat. Prog Nat Sci Mater Int 2021;31:428-33.
57. Meredig B, Agrawal A, Kirklin S, et al. Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys Rev B 2014;89:094104.
58. Wen C, Zhang Y, Wang C, et al. Machine learning assisted design of high entropy alloys with desired property. Acta Mater 2019;170:109-17.
59. Yang S, Lu J, Xing F, Zhang L, Zhong Y. Revisit the VEC rule in high entropy alloys (HEAs) with high-throughput CALPHAD approach and its applications for material design-A case study with Al-Co-Cr-Fe-Ni system. Acta Mater 2020;192:11-9.
60. Ruan J, Xu W, Yang T, et al. Accelerated design of novel W-free high-strength Co-base superalloys with extremely wide γ/γʹ region by machine learning and CALPHAD methods. Acta Mater 2020;186:425-33.
61. Tiryakioğlu M, Campbell J, Alexopoulos ND. Quality indices for aluminum alloy castings: a critical review. Metall Mater Trans B 2009;40:802-11.
62. Tiryakioglu M, Campbell J, Amer Foundry S. Quality index for aluminum alloy castings. Trans Am Foundry Soc Vol 2013;121:217-21.
63. Özdeş H, Tiryakioğlu M. On the relationship between structural quality index and fatigue life distributions in aluminum aerospace castings. Metals 2016;6:81.
64. Liu ZK, Chen LQ, Raghavan P, et al. An integrated framework for multi-scale materials simulation and design. J Computer-Aided Mater Des 2004;11:183-99.
65. Chen H, Chen Q, Engström A. Development and applications of the TCAL aluminum alloy database. Calphad 2018;62:154-71.
66. Deng L, Li X. Machine learning paradigms for speech recognition: an overview. IEEE Trans Audio Speech Lang Process 2013;21:1060-89.
67. Agrawal A, Choudhary A. Perspective: materials informatics and big data: Realization of the “fourth paradigm” of science in materials science. APL Mater 2016;4:053208.
68. Xu X, Wang L, Zhu G, Zeng X. Predicting tensile properties of AZ31 magnesium alloys by machine learning. JOM 2020;72:3935-42.
69. Liu Y, Wang L, Zhang H, et al. Accelerated development of high-strength magnesium alloys by machine learning. Metall Mater Trans A 2021;52:943-54.
71. Olson GB. Computational design of hierarchically structured materials. Science 1997;277:1237-42.
72. Olson G, Kuehmann C. Materials genomics: from CALPHAD to flight. Scripta Materialia 2014;70:25-30.
73. Sundman B, Lukas HL, Fries SG. Computational thermodynamics: the Calphad method. New York: Cambridge university press; 2007.
74. Lu X, Wang Z, Cui Y, Jin Z. Computational thermodynamics, computational kinetics, and materials design. Chin Sci Bull 2014;59:1662-71.
75. Liu ZK, Wang Y. Appendix A: YPHON. Computational thermodynamics of materials. Cambridge: Cambridge University Press; 2016. pp. 221-30.
76. Du Y, Liu S, Zhang L, et al. An overview on phase equilibria and thermodynamic modeling in multicomponent Al alloys: focusing on the Al-Cu-Fe-Mg-Mn-Ni-Si-Zn system. Calphad 2011;35:427-45.
77. Xu G, Zhang L, Liu L, et al. Thermodynamic database of multi-component Mg alloys and its application to solidification and heat treatment. J Magnes Alloy 2016;4:249-64.
78. Shi R, Luo AA. Applications of CALPHAD modeling and databases in advanced lightweight metallic materials. Calphad 2018;62:1-17.
79. Chen H, Mao H, Chen Q. Database development and Calphad calculations for high entropy alloys: challenges, strategies, and tips. Mater Chem Phys 2018;210:279-90.
80. Luo Q, Guo Y, Liu B, et al. Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: a critical review. J Mater Sci Technol 2020;44:171-90.
81. Tang Y, Zhang L, Du Y. Diffusivities in liquid and fcc Al-Mg-Si alloys and their application to the simulation of solidification and dissolution processes. Calphad 2015;49:58-66.
82. Schmid-fetzer R, Zhang F. The light alloy Calphad databases PanAl and PanMg. Calphad 2018;61:246-63.
83. Kairy S, Rouxel B, Dumbre J, et al. Simultaneous improvement in corrosion resistance and hardness of a model 2xxx series Al-Cu alloy with the microstructural variation caused by Sc and Zr additions. Corros Sci 2019;158:108095.
84. Zhang C, Miao J, Chen S, Zhang F, Luo AA. CALPHAD-based modeling and experimental validation of microstructural evolution and microsegregation in magnesium alloys during solidification. J Phase Equilib Diffus 2019;40:495-507.
85. Zhang F, Zhang C, Liang S, Lv DC, Chen SL, Cao WS. Simulation of the composition and cooling rate effects on the solidification path of casting aluminum alloys. J Phase Equilib Diffus 2020;41:793-803.
86. Liu S, Wang X, Pan Q, et al. Investigation of microstructure evolution and quench sensitivity of Al-Mg-Si-Mn-Cr alloy during isothermal treatment. J Alloys Compd 2020;826:154144.
88. Kou S. A simple index for predicting the susceptibility to solidification cracking. Weld Res 2015;94:374-88.
89. Liu J, Kou S. Susceptibility of ternary aluminum alloys to cracking during solidification. Acta Mater 2017;125:513-23.
90. Soysal T, Kou S. A simple test for assessing solidification cracking susceptibility and checking validity of susceptibility prediction. Acta Mater 2018;143:181-97.
91. Easton M, Stjohn D. A model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles. Acta Mater 2001;49:1867-78.
92. Quested T, Dinsdale A, Greer A. Thermodynamic modelling of growth-restriction effects in aluminium alloys. Acta Mater 2005;53:1323-34.
93. Joshi U, Hari Babu N. The grain refinement potency of bismuth in magnesium. J Alloys Compd 2017;695:971-5.
94. Farkoosh A, Javidani M, Hoseini M, Larouche D, Pekguleryuz M. Phase formation in as-solidified and heat-treated Al-Si-Cu-Mg-Ni alloys: Thermodynamic assessment and experimental investigation for alloy design. J Alloys Compd 2013;551:596-606.
95. Lu Z, Zhang L. Thermodynamic description of the quaternary Al-Si-Mg-Sc system and its application to the design of novel Scadditional A356 alloys. Mater Des 2017;116:427-37.
96. Wei C, Guangxin W, Jieyu Z. Design and properties of Al-10Si-xZn-yMg alloy for hot dip coating. Surf Coatings Technol 2021;416:127134.
97. Zhu X, Liu F, Wang S, Ji S. The development of low-temperature heat-treatable high-pressure die-cast Al-Mg-Fe-Mn alloys with Zn. J Mater Sci 2021;56:11083-97.
98. Nakashima PN, Smith AE, Etheridge J, Muddle BC. The bonding electron density in aluminum. Science 2011;331:1583-6.
99. Wang Y, Wang WY, Chen LQ, Liu ZK. Bonding charge density from atomic perturbations. J Comput Chem 2015;36:1008-14.
100. Wang WY, Shang SL, Wang Y, et al. Solid-solution hardening in Mg-Gd-TM (TM = Ag, Zn, and Zr) alloys: an integrated density functional theory and electron work function study. JOM 2015;67:2433-41.
101. Wang WY, Shang SL, Wang Y, et al. Lattice distortion induced anomalous ferromagnetism and electronic structure in FCC Fe and Fe-TM (TM = Cr, Ni, Ta and Zr) alloys. Mater Chem Phys 2015;162:748-56.
102. Liu G, Gao J, Che C, Lu Z, Yi W, Zhang L. Optimization of casting means and heat treatment routines for improving mechanical and corrosion resistance properties of A356-0.54Sc casting alloy. Mater Today Commun 2020;24:101227.
103. Xie T, Shi H, Wang H, Luo Q, Li Q, Chou K. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system. J Mater Sci Technol 2022;97:147-55.
104. Liu J, Kou S. Crack susceptibility of binary aluminum alloys during solidification. Acta Mater 2016;110:84-94.
105. Zhang F, Liang S, Zhang C, et al. Prediction of cracking susceptibility of commercial aluminum alloys during solidification. Metals 2021;11:1479.
106. Kou S. Predicting susceptibility to solidification cracking and liquation cracking by CALPHAD. Metals 2021;11:1442.
107. Liu J, Zeng P, Kou S. Solidification cracking susceptibility of quaternary aluminium alloys. Sci Technol Weld Join 2021;26:244-57.
108. Deng C, Xu B, Wu P, Li Q. Stability of the Al/TiB2 interface and doping effects of Mg/Si. Appl Surf Sci 2017;425:639-45.
109. Chen Z, Kang H, Fan G, et al. Grain refinement of hypoeutectic Al-Si alloys with B. Acta Mater 2016;120:168-78.
110. Li Y, Hu B, Gu Q, Liu B, Li Q. Achievement in grain-refining hypoeutectic Al-Si alloys with Nb. Scr Mater 2019;160:75-80.
111. Qian M, Cao P, Easton M, Mcdonald S, Stjohn D. An analytical model for constitutional supercooling-driven grain formation and grain size prediction. Acta Mater 2010;58:3262-70.
112. Kozlov A, Schmid-fetzer R. Growth restriction factor in Al-Si-Mg-Cu alloys. IOP Conf Ser:Mater Sci Eng 2012;27:012001.
113. Schmid-fetzer R, Kozlov A. Thermodynamic aspects of grain growth restriction in multicomponent alloy solidification. Acta Mater 2011;59:6133-44.
114. Stjohn DH, Prasad A, Easton MA, Qian M. The contribution of constitutional supercooling to nucleation and grain formation. Metall Mater Trans A 2015;46:4868-85.
115. Easton M, Qian M, Prasad A, Stjohn D. Recent advances in grain refinement of light metals and alloys. Curr Opin Solid State Mater Sci 2016;20:13-24.
116. Johnsson M. Influence of Si and Fe on the grain refinement of aluminium. Int J Mater Res 1994;85:781-5.
117. Chai G, Bäackerud L, Arnberg L. Relation between grain size and coherency parameters in aluminium alloys. Mater Sci Technol 2013;11:1099-103.
118. Men H, Fan Z. Effects of solute content on grain refinement in an isothermal melt. Acta Mater 2011;59:2704-12.
120. Pelton AD, Eriksson G, Bale CW. Scheil-Gulliver constituent diagrams. Metall Mater Trans A 2017;48:3113-29.
121. Darling K, Roberts A, Armstrong L, et al. Influence of Mn solute content on grain size reduction and improved strength in mechanically alloyed Al-Mn alloys. Mater Sci Eng A 2014;589:57-65.
122. Yu Q, Shan ZW, Li J, et al. Strong crystal size effect on deformation twinning. Nature 2010;463:335-8.
123. Hattrick-simpers JR, Gregoire JM, Kusne AG. Perspective: composition-structure-property mapping in high-throughput experiments: turning data into knowledge. APL Mater 2016;4:053211.
124. Garay-tapia A, Romero AH, Trapaga G, Arróyave R. First-principles investigation of the Al-Si-Sr ternary system: ground state determination and mechanical properties. Intermetallics 2012;21:31-44.
125. Li C, Zeng S, Chen Z, Cheng N, Chen T. First-principles calculations of elastic and thermodynamic properties of the four main intermetallic phases in Al-Zn-Mg-Cu alloys. Comput Mater Sci 2014;93:210-20.
126. Huang Z, Zhao Y, Hou H, Han P. Electronic structural, elastic properties and thermodynamics of Mg17Al12, Mg2Si and Al2Y phases from first-principles calculations. Phys B Condens Matter 2012;407:1075-81.
127. Chen D, Chen Z, Wu Y, Wang M, Ma N, Wang H. First-principles investigation of mechanical, electronic and optical properties of Al3Sc intermetallic compound under pressure. Comput Mater Sci 2014;91:165-72.
128. Zheng B, Zhao L, Hu X, Dong S, Li H. First-principles studies of Mg17Al12, Mg2A13, Mg2Sn, MgZn2, Mg2Ni and Al3Ni phases. Phys B Condens Matter 2019;560:255-60.
129. Dodd SP, Cankurtaran M, Saunders GA, James B. Ultrasonic determination of the temperature and hydrostatic pressure dependences of the elastic properties of ceramic titanium diboride. J Mater Sci 2001;36:3989-96.
130. Chen D, Xia C, Chen Z, et al. Thermodynamic, elastic and electronic properties of AlSc2Si2. Mater Lett 2015;138:148-50.
131. Pang M, Zhan Y, Wang H, Jiang W, Du Y. Structural, electronic, elastic and thermodynamic properties of AlSi2RE (RE = La, Ce, Pr and Nd) from first-principle calculations. Comput Mater Sci 2011;50:3303-10.
132. Tang K, Du Q, Li Y. Modelling microstructure evolution during casting, homogenization and ageing heat treatment of Al-Mg-Si-Cu-Fe-Mn alloys. Calphad 2018;63:164-84.
133. Assadiki A, Esin VA, Martinez R, Poole WJ, Cailletaud G. Modelling precipitation hardening in an A356+0.5 wt%Cu cast aluminum alloy. Mater Sci Eng A 2021;819:141450.
134. Hu Y, Xie J, Liu Z, et al. CA method with machine learning for simulating the grain and pore growth of aluminum alloys. Comput Mater Sci 2018;142:244-54.
135. Li J, Zhang Y, Cao X, et al. Accelerated discovery of high-strength aluminum alloys by machine learning. Commun Mater 2020;1:73.
136. Singh AK, Singhal D, Kumar R. Machining of aluminum 7075 alloy using EDM process: An ANN validation. Mater Today Proc 2020;26:2839-44.
137. Chaudry U, Hamad K, Abuhmed T. Machine learning-aided design of aluminum alloys with high performance. Mater Today Commun 2021;26:101897.
138. Ramprasad R, Batra R, Pilania G, Mannodi-kanakkithodi A, Kim C. Machine learning in materials informatics: recent applications and prospects. npj Comput Mater 2017;3:54.
139. Toyao T, Maeno Z, Takakusagi S, Kamachi T, Takigawa I, Shimizu K. Machine learning for catalysis informatics: recent applications and prospects. ACS Catal 2020;10:2260-97.
140. Peurifoy J, Shen Y, Jing L, et al. Nanophotonic particle simulation and inverse design using artificial neural networks. Sci Adv 2018;4:eaar4206.
141. Zhang Y, Ling C. A strategy to apply machine learning to small datasets in materials science. npj Comput Mater 2018;4:25.
142. Schleder GR, Padilha ACM, Acosta CM, Costa M, Fazzio A. From DFT to machine learning: recent approaches to materials science–a review. J Phys Mater 2019;2:032001.
143. Feng S, Fu H, Zhou H, Wu Y, Lu Z, Dong H. A general and transferable deep learning framework for predicting phase formation in materials. npj Comput Mater 2021;7:10.
146. Challapalli A, Patel D, Li G. Inverse machine learning framework for optimizing lightweight metamaterials. Mater Des 2021;208:109937.
147. Xiong J, Zhang T, Shi S. Machine learning prediction of elastic properties and glass-forming ability of bulk metallic glasses. MRS Communications 2019;9:576-85.
148. Yao Y, Liu Z, Xie P, et al. Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts. Sci Adv 2020;6:eaaz0510.
149. Zeng Y, Man M, Bai K, Zhang Y. Revealing high-fidelity phase selection rules for high entropy alloys: a combined CALPHAD and machine learning study. Mater Des 2021;202:109532.
150. Pan S, Wang Y, Yu J, et al. Accelerated discovery of high-performance Cu-Ni-Co-Si alloys through machine learning. Mater Des 2021;209:109929.
151. Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science 2015;349:255-60.
152. Kalinin SV, Sumpter BG, Archibald RK. Big-deep-smart data in imaging for guiding materials design. Nat Mater 2015;14:973-80.
153. Andolina CM, Wright JG, Das N, Saidi WA. Improved Al-Mg alloy surface segregation predictions with a machine learning atomistic potential. Phys Rev Materials 2021;5:083804.
154. Marchand D, Jain A, Glensk A, Curtin WA. Machine learning for metallurgy I. A neural-network potential for Al-Cu. Phys Rev Materials 2020;4:103601.
155. Jain ACP, Marchand D, Glensk A, Ceriotti M, Curtin WA. Machine learning for metallurgy III: a neural network potential for Al-Mg-Si. Phys Rev Materials 2021;5:053805.
156. Wang WY, Darling KA, Wang Y, et al. Power law scaled hardness of Mn strengthened nanocrystalline Al Mn non-equilibrium solid solutions. Scr Mater 2016;120:31-6.
157. Zou C, Li J, Wang WY, et al. Revealing the local lattice strains and strengthening mechanisms of Ti alloys. Comput Mater Sci 2018;152:169-77.
158. Wang W, Li J, Liu W, Liu Z. Integrated computational materials engineering for advanced materials: a brief review. Comput Mater Sci 2019;158:42-8.
159. Wang WY, Tang B, Lin D, et al. A brief review of data-driven ICME for intelligently discovering advanced structural metal materials: Insight into atomic and electronic building blocks. J Mater Res 2020;35:872-89.
160. Zou C, Li J, Wang WY, et al. Integrating data mining and machine learning to discover high-strength ductile titanium alloys. Acta Mater 2021;202:211-21.
161. Jiang L, Wang C, Fu H, Shen J, Zhang Z, Xie J. Discovery of aluminum alloys with ultra-strength and high-toughness via a propertyoriented design strategy. J Mater Sci Technol 2022;98:33-43.
162. Lu Z, Zhang L, Wang J, Yao Q, Rao G, Zhou H. Understanding of strengthening and toughening mechanisms for Sc-modified Al-Si-(Mg) series casting alloys designed by computational thermodynamics. J Alloys Compd 2019;805:415-25.
163. Thermo Calc Software. Available from: http://www.thermocalc.com [Last accessed on 28 Dec 2021].
164. Pandat Software. Available from: https://computherm.com [Last accessed on 28 Dec 2021].
165. FactSage Software. Available from: https://www.factsage.com [Last accessed on 28 Dec 2021].
166. MTDTA Software. Available from: https://www.matcalc-engineering.com [Last accessed on 28 Dec 2021].
167. Lu Q, Li K, Chen H, et al. Simultaneously enhanced strength and ductility of 6xxx Al alloys via manipulating meso-scale and nanoscale structures guided with phase equilibrium. J Mater Sci Technol 2020;41:139-48.
168. Yi W, Liu G, Lu Z, Gao J, Zhang L. Efficient alloy design of Sr-modified A356 alloys driven by computational thermodynamics and machine learning. J Mater Sci Technol 2021; doi: 10.1016/j.jmst.2021.09.061.
169. Ansara I, Dinsdale AT, Rand MH. Cost 507 definition of thermochemical and thermophysical properties to provide a database for the development of new light alloys: Thermochemical database for light metal alloys. Available from: http://www.opencalphad.com/databases/CGNA18499ENC_001.pdf [Last accessed on 30 Dec 2021].
170. ThermoTech Al-based Alloys Database. Available from: http://www.thermocalc.com/media [Last accessed on 28 Dec 2021].
171. FTlite Database. Available from: https://www.crct.polymtl.ca/fact/documentation [Last accessed on 28 Dec 2021].
172. ME-A1 Database. Available from: https://www.matcalc-engineering.com/index.php/databases [Last accessed on 28 Dec 2021].
173. TCAL Database. Available from: https://thermocalc.com/products/databases [Last accessed on 28 Dec 2021].
174. PanAl Database. Available from: https://computherm.com/databases [Last accessed on 28 Dec 2021].
175. Priya P, Johnson DR, Krane MJ. Modeling phase transformation kinetics during homogenization of aluminum alloy 7050. Comput Mater Sci 2017;138:277-87.
176. Ahn T, Jung J, Baek E, Hwang SS, Euh K. Temporal evolution of precipitates in multicomponent Al-6Mg-9Si-10Cu-10Zn-3Ni alloy studied by complementary experimental methods. J Alloys Compd 2017;701:660-8.
177. Brollo GL, de Paula LC, Proni CTW, Zoqui EJ. Analysis of the thermodynamic behavior of A355 and B319 alloys using the differentiation method. Thermochim Acta 2018;659:121-35.
178. Chen SL, Zhang F, Xie FY, et al. Calculating phase diagrams using PANDAT and panengine. JOM 2003;55:48-51.
179. Chen S, Daniel S, Zhang F, et al. The PANDAT software package and its applications. Calphad 2002;26:175-88.
180. Bocklund B, Otis R, Egorov A, Obaied A, Roslyakova I, Liu Z. ESPEI for efficient thermodynamic database development, modification, and uncertainty quantification: application to Cu-Mg. MRS Commun 2019;9:618-27.
181. Cai Q, Mendis CL, Chang IT, Fan Z. Microstructure and mechanical properties of new die-cast quaternary Al-Cu-Si-Mg alloys. Mater Sci Eng A 2021;800:140357.
182. Chen H, Chen Q, Bratberg J, Engström A. Predictions of stable and metastable phase formations in aluminum alloys. Mater Today Proc 2015;2:4939-48.
184. Yi W, Gao J, Tang Y, Zhang L. Thermodynamic descriptions of ternary Al-Si-Sr system supported by key experiments. Calphad 2020;68:101732.
185. Gao J, Zhong J, Liu G, et al. A machine learning accelerated distributed task management system (Malac-Distmas) and its application in high-throughput CALPHAD computations aiming at efficient alloy design. Adv Powder Mater 2021; doi: 10.1016/j.apmate.2021.09.005.