REFERENCES
1. Daughton CG, Ternes TA. Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 1999;107:907-38.
2. Nicolopoulou-Stamati P, Hens L, Sasco AJ. Cosmetics as endocrine disruptors: are they a health risk? Rev Endocr Metab Disord 2015;16:373-83.
3. Kessler R. More than cosmetic changes: taking stock of personal care product safety. Environ Health Perspect 2015;123:A120-7.
4. Li J, Liu W, Xia W, et al. Variations, determinants, and coexposure patterns of personal care product chemicals among Chinese pregnant women: a longitudinal study. Environ Sci Technol 2019;53:6546-55.
5. Fandiño-Del-Rio M, Matsui EC, Calafat AM, et al. Recent use of consumer and personal care products and exposures to select endocrine disrupting chemicals among urban children with asthma. J Expo Sci Environ Epidemiol 2024;34:637-46.
6. Goldberg M, Adgent MA, Stevens DR, et al. Environmental phenol exposures in 6- to 12-week-old infants: the infant feeding and early development (IFED) study. Environ Res 2024;252:119075.
7. Sdougkou K, Papazian S, Bonnefille B, et al. Longitudinal exposomics in a multiomic wellness cohort reveals distinctive and dynamic environmental chemical mixtures in blood. Environ Sci Technol 2024;58:16302-15.
8. García-Pimentel M, Campillo JA, Castaño-Ortiz JM, Llorca M, León VM. Occurrence and distribution of contaminants of legacy and emerging concern in surface waters of two Western Mediterranean coastal areas: Mar Menor Lagoon and Ebro Delta. Mar Pollut Bull 2023;187:114542.
9. Lu S, Wang J, Wang B, et al. Comprehensive profiling of the distribution, risks and priority of pharmaceuticals and personal care products: a large-scale study from rivers to coastal seas. Water Res 2023;230:119591.
10. Ghosh R, Parde D, Bhaduri S, Rajpurohit P, Behera M. Occurrence, fate, transport, and removal technologies of emerging contaminants: a review on recent advances and future perspectives. CLEAN Soil Air Water 2024;52:2300259.
11. K’oreje K, Okoth M, Van Langenhove H, Demeestere K. Occurrence and point-of-use treatment of contaminants of emerging concern in groundwater of the Nzoia River basin, Kenya. Environ Pollut 2022;297:118725.
12. Lu J, Mao H, Li H, Wang Q, Yang Z. Occurrence of and human exposure to parabens, benzophenones, benzotriazoles, triclosan and triclocarban in outdoor swimming pool water in Changsha, China. Sci Total Environ 2017;605-6:1064-9.
13. Vecchiato M, Barbaro E, Spolaor A, et al. Fragrances and PAHs in snow and seawater of Ny-Ålesund (Svalbard): local and long-range contamination. Environ Pollut 2018;242:1740-7.
14. Montes-Grajales D, Fennix-Agudelo M, Miranda-Castro W. Occurrence of personal care products as emerging chemicals of concern in water resources: a review. Sci Total Environ 2017;595:601-14.
15. Kek T, Geršak K, Virant-Klun I. Exposure to endocrine disrupting chemicals (bisphenols, parabens, and triclosan) and their associations with preterm birth in humans. Reprod Toxicol 2024;125:108580.
16. Veettil P, Nikarthil Sidhick J, Kavungal Abdulkhader S, Ms SP, Kumari Chidambaran C. Triclosan, an antimicrobial drug, induced reproductive impairment in the freshwater fish, Anabas testudineus (Bloch, 1792). Toxicol Ind Health 2024;40:254-71.
17. Wimmerova L, Solcova O, Spacilova M, Cehajic N, Krejcikova S, Marsik P. Toxicity assessment and treatment options of diclofenac and triclosan dissolved in water. Toxics 2022;10:422.
18. Fent K, Zenker A, Rapp M. Widespread occurrence of estrogenic UV-filters in aquatic ecosystems in Switzerland. Environ Pollut 2010;158:1817-24.
19. Carstensen L, Beil S, Börnick H, Stolte S. Structure-related endocrine-disrupting potential of environmental transformation products of benzophenone-type UV filters: a review. J Hazard Mater 2022;430:128495.
20. Mao JF, Li W, Ong CN, He Y, Jong MC, Gin KY. Assessment of human exposure to benzophenone-type UV filters: a review. Environ Int 2022;167:107405.
21. Ghazipura M, McGowan R, Arslan A, Hossain T. Exposure to benzophenone-3 and reproductive toxicity: a systematic review of human and animal studies. Reprod Toxicol 2017;73:175-83.
22. Zheng X, Ren X, Zhao L, Guo L. Binding and activation of estrogen related receptor γ as possible molecular initiating events of hydroxylated benzophenones endocrine disruption toxicity. Environ Pollut 2020;263:114656.
23. Zhu Q, Wang M, Jia J, et al. Occurrence, distribution, and human exposure of several endocrine-disrupting chemicals in indoor dust: a nationwide study. Environ Sci Technol 2020;54:11333-43.
24. Wang W, Wang X, Zhu Q, et al. Occurrence of synthetic phenolic antioxidants in foodstuffs from ten provinces in China and its implications for human dietary exposure. Food Chem Toxicol 2022;165:113134.
25. Tang S, Sun X, Qiao X, et al. Prenatal exposure to emerging plasticizers and synthetic antioxidants and their potency to cross human placenta. Environ Sci Technol 2022;56:8507-17.
26. Xu YQ, Liu SS, Wang ZJ, Li K, Qu R. Commercial personal care product mixtures exhibit hormetic concentration-responses to Vibrio qinghaiensis sp.-Q67. Ecotoxicol Environ Saf 2018;162:304-11.
27. Xu YQ, Li K, Wang ZJ, Huang P, Liu SS. Transfer pattern of hormesis into personal care product mixtures from typical hormesis-inducing compounds. Sci Total Environ 2023;855:158981.
28. Zhu XW, Liu SS, Ge HL, Liu Y. Comparison between the short-term and the long-term toxicity of six triazine herbicides on photobacteria Q67. Water Res 2009;43:1731-9.
29. Liu S, Zhang J, Zhang Y, Qin L. APTox: assessment and prediction on toxicity of chemical mixtures. Acta Chim Sinica 2012;70:1511.
30. Wang ZJ, Liu SS, Qu R. JSFit: a method for the fitting and prediction of J- and S-shaped concentration-response curves. RSC Adv 2018;8:6572-80.
31. Stroppel L, Schultz-Fademrecht T, Cebulla M, et al. Antimicrobial preservatives for protein and peptide formulations: an overview. Pharmaceutics 2023;15:563.
32. Esimbekova EN, Asanova AA, Kratasyuk VA. Alternative enzyme inhibition assay for safety evaluation of food preservatives. Life 2023;13:1243.
33. Reeder MJ, Zhang D, Aravamuthan SR, et al. More than just methylisothiazolinone: Retrospective analysis of patients with isothiazolinone allergy in North America, 2017-2020. J Am Acad Dermatol 2024;90:319-27.
34. Molin EAD, Leite GAA, Lazzari VM. A systematic review focused on lubricant use and sperm quality: improving human reproductive success by informing lubricants toxicity. J Appl Toxicol 2024;44:1470-7.
35. Sala-Hamrick KE, Tapaswi A, Polemi KM, Nguyen VK, Colacino JA. High-throughput transcriptomics of nontumorigenic breast cells exposed to environmentally relevant chemicals. Environ Health Perspect 2024;132:47002.
36. Jun T, Shin SH, Won YY. Engineered polymeric excipients for enhancing the stability of protein biologics: poly(N-isopropylacrylamide)-poly(ethylene glycol) (PNIPAM-PEG) block copolymers. Int J Pharm 2024;664:124636.
37. Lou H, Wu Y, Kuczera K, Schöneich C. Coarse-grained molecular dynamics simulation of heterogeneous polysorbate 80 surfactants and their interactions with small molecules and proteins. Mol Pharm 2024;21:5041-52.
38. Friis UF, Menné T, Thyssen JP, Johansen JD. A patient’s drawing helped the physician to make the correct diagnosis: occupational contact allergy to isothiazolinone. Contact Dermatitis 2012;67:174-6.
39. Tang L, Liu M, Li J, et al. Isothiazolinone disrupts reproductive endocrinology by targeting the G-protein-coupled receptor signaling. Environ Sci Technol 2024;58:1076-87.
40. Silva V, Silva C, Soares P, Garrido EM, Borges F, Garrido J. Isothiazolinone biocides: chemistry, biological, and toxicity profiles. Molecules 2020;25:991.
41. Schwensen JF, Lundov MD, Bossi R, et al. Methylisothiazolinone and benzisothiazolinone are widely used in paint: a multicentre study of paints from five European countries. Contact Dermatitis 2015;72:127-38.
42. Amat AM, Arques A, López-Pérez M, Nacher M, Palacios S. Effect of methylisothiazolinone on biological treatment: efficiency of SBRs and bioindicative studies. Environ Eng Sci 2015;32:479-85.
43. Paijens C, Frère B, Caupos E, Moilleron R, Bressy A. Determination of 18 biocides in both the dissolved and particulate fractions of urban and surface waters by HPLC-MS/MS. Water Air Soil Pollut 2020;231:4546.
44. Paun I, Pirvu F, Iancu VI, Chiriac FL. Occurrence and transport of isothiazolinone-type biocides from commercial products to aquatic environment and environmental risk assessment. Int J Environ Res Public Health 2022;19:7777.
45. Lee S, Ji K. Toxicological signature for thyroid endocrine disruption of dichlorooctylisothiazolinone in zebrafish larvae. Ecotoxicology 2023;32:38-45.
46. Lee S, Lee JS, Kho Y, Ji K. Effects of methylisothiazolinone and octylisothiazolinone on development and thyroid endocrine system in zebrafish larvae. J Hazard Mater 2022;425:127994.
47. Lanigan RS. Final report on the safety assessment of PEG-7, -30, -40, -78, and -80 glyceryl cocoate. Int J Toxicol 1999;18:33-42. Available from: https://www.semanticscholar.org/paper/Final. [Last accessed on 19 Dec 2024]
48. Humann RA, Smith TK. Potential trypanocidal activity of glycerol analogues. ChemistryOpen 2024;13:e202400094.
49. Yi L, Tian M, Piao C, et al. The protective effects of 1,2-propanediol against radiation-induced hematopoietic injury in mice. Biomed Pharmacother 2019;114:108806.
50. Cheng R, Huang P, Ding TT, Gu ZW, Tao MT, Liu SS. Time-dependent hormesis transfer from five high-frequency personal care product components to mixtures. Environ Res 2024;248:118418.
51. Ortiz de García S, García-Encina PA, Irusta-Mata R. Dose-response behavior of the bacterium Vibrio fischeri exposed to pharmaceuticals and personal care products. Ecotoxicology 2016;25:141-62.