REFERENCES

1. Alberghini L, Truant A, Santonicola S, Colavita G, Giaccone V. Microplastics in fish and fishery products and risks for human health: a review. Int J Environ Res Public Health 2022;20:789.

2. Cózar A, Echevarría F, González-Gordillo JI, et al. Plastic debris in the open ocean. Proc Natl Acad Sci USA 2014;111:10239-44.

3. Cózar A, Sanz-Martín M, Martí E, et al. Plastic accumulation in the Mediterranean sea. PLoS One 2015;10:e0121762.

4. Chen G, Li Y, Wang J. Occurrence and ecological impact of microplastics in aquaculture ecosystems. Chemosphere 2021;274:129989.

5. Lin L, Huang Y, Wang P, et al. Environmental occurrence and ecotoxicity of aquaculture-derived plastic leachates. J Hazard Mater 2023;458:132015.

6. Vandeputte M, Gagnaire PA, Allal F. The European sea bass: a key marine fish model in the wild and in aquaculture. Anim Genet 2019;50:195-206.

7. Muns-Pujadas L, Dallarés S, Constenla M, et al. Revealing the capability of the European hake to cope with micro-litter environmental exposure and its inferred potential health impact in the NW Mediterranean Sea. Mar Environ Res 2023;186:105921.

8. Chenet T, Mancia A, Bono G, et al. Plastic ingestion by Atlantic horse mackerel (Trachurus trachurus) from central Mediterranean Sea: a potential cause for endocrine disruption. Environ Pollut 2021;284:117449.

9. Barboza LGA, Lopes C, Oliveira P, et al. Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. Sci Total Environ 2020;717:134625.

10. Barboza LGA, Cunha SC, Monteiro C, Fernandes JO, Guilhermino L. Bisphenol A and its analogs in muscle and liver of fish from the North East Atlantic Ocean in relation to microplastic contamination. Exposure and risk to human consumers. J Hazard Mater 2020;393:122419.

11. Barboza LGA, Vieira LR, Branco V, et al. Microplastics cause neurotoxicity, oxidative damage and energy-related changes and interact with the bioaccumulation of mercury in the European seabass, Dicentrarchus labrax (Linnaeus, 1758). Aquat Toxicol 2018;195:49-57.

12. Brandts I, Balasch JC, Gonçalves AP, et al. Immuno-modulatory effects of nanoplastics and humic acids in the European seabass (Dicentrarchus labrax). J Hazard Mater 2021;414:125562.

13. Gunaalan K, Fabbri E, Capolupo M. The hidden threat of plastic leachates: a critical review on their impacts on aquatic organisms. Water Res 2020;184:116170.

14. Lionetto MG, Caricato R, Giordano ME. Pollution biomarkers in the framework of marine biodiversity conservation: state of art and perspectives. Water 2021;13:1847.

15. Hermabessiere L, Dehaut A, Paul-Pont I, et al. Occurrence and effects of plastic additives on marine environments and organisms: a review. Chemosphere 2017;182:781-93.

16. Abdallah M. Environmental occurrence, analysis and human exposure to the flame retardant tetrabromobisphenol-A (TBBP-A)-A review. Environ Int 2016;94:235-50.

17. Chen D, Kannan K, Tan H, et al. Bisphenol analogues other than BPA: environmental occurrence, human exposure, and toxicity - a review. Environ Sci Technol 2016;50:5438-53.

18. Liu J, Zhang L, Lu G, Jiang R, Yan Z, Li Y. Occurrence, toxicity and ecological risk of bisphenol A analogues in aquatic environment - a review. Ecotoxicol Environ Saf 2021;208:111481.

19. den Braver-Sewradj SP, van Spronsen R, Hessel EVS. Substitution of bisphenol A: a review of the carcinogenicity, reproductive toxicity, and endocrine disruption potential of alternative substances. Crit Rev Toxicol 2020;50:128-47.

20. Fabrello J, Matozzo V. Bisphenol analogs in aquatic environments and their effects on marine species - a review. J Mar Sci Eng 2022;10:1271.

21. Carnevali O, Giorgini E, Canuti D, Mylonas CC, Forner-Piquer I, Maradonna F. Diets contaminated with bisphenol A and Di-isononyl phtalate modify skeletal muscle composition: a new target for environmental pollutant action. Sci Total Environ 2019;658:250-9.

22. Maradonna F, Nozzi V, Dalla Valle L, et al. A developmental hepatotoxicity study of dietary bisphenol A in Sparus aurata juveniles. Comp Biochem Physiol C Toxicol Pharmacol 2014;166:1-13.

23. Pérez-Albaladejo E, Solís A, Bani I, Porte C. PLHC-1 topminnow liver cells: an alternative model to investigate the toxicity of plastic additives in the aquatic environment. Ecotoxicol Environ Saf 2021;208:111746.

24. Pérez-Albaladejo E, Solé M, Porte C. Plastics and plastic additives as inducers of oxidative stress. Curr Opin Toxicol 2020;20-1:69-76.

25. Rios-Fuster B, Alomar C, Paniagua González G, et al. Assessing microplastic ingestion and occurrence of bisphenols and phthalates in bivalves, fish and holothurians from a Mediterranean marine protected area. Environ Res 2022;214:114034.

26. Gil-Solsona R, Castaño-Ortiz JM, Muñoz-Mas R, et al. A holistic assessment of the sources, prevalence, and distribution of bisphenol A and analogues in water, sediments, biota and plastic litter of the Ebro Delta (Spain). Environ Pollut 2022;314:120310.

27. Prokić MD, Radovanović TB, Gavrić JP, Faggio C. Ecotoxicological effects of microplastics: examination of biomarkers, current state and future perspectives. TrAC Trend Anal Chem 2019;111:37-46.

28. Prüst M, Meijer J, Westerink RHS. The plastic brain: neurotoxicity of micro- and nanoplastics. Part Fibre Toxicol 2020;17:24.

29. Russo G, Barbato F, Mita DG, Grumetto L. Occurrence of bisphenol A and its analogues in some foodstuff marketed in Europe. Food Chem Toxicol 2019;131:110575.

30. Lee JG, Jeong Y, Kim D, Kang GJ, Kang Y. Assessment of tetrabromobisphenol and hexabromocyclododecanes exposure and risk characterization using occurrence data in foods. Food Chem Toxicol 2020;137:111121.

31. Akhbarizadeh R, Russo G, Rossi S, et al. Emerging endocrine disruptors in two edible fish from the Persian Gulf: occurrence, congener profile, and human health risk assessment. Mar Pollut Bull 2021;166:112241.

32. Capó X, Alomar C, Compa M, et al. Quantification of differential tissue biomarker responses to microplastic ingestion and plasticizer bioaccumulation in aquaculture reared sea bream Sparus aurata. Environ Res 2022;211:113063.

33. Mita L, Bianco M, Viggiano E, et al. Bisphenol A content in fish caught in two different sites of the Tyrrhenian Sea (Italy). Chemosphere 2011;82:405-10.

34. Estevez J, Vilanova E. Model equations for the kinetics of covalent irreversible enzyme inhibition and spontaneous reactivation: esterases and organophosphorus compounds. Crit Rev Toxicol 2009;39:427-48.

35. Fu H, Xia Y, Chen Y, et al. Acetylcholinesterase is a potential biomarker for a broad spectrum of organic environmental pollutants. Environ Sci Technol 2018;52:8065-74.

36. Fu J, Pacyniak E, Leed MGD, Sadgrove MP, Marson L, Jay M. Interspecies differences in the metabolism of a multiester prodrug by carboxylesterases. J Pharm Sci 2016;105:989-95.

37. Tsugoshi Y, Watanabe Y, Tanikawa Y, et al. Inhibitory effects of organophosphate esters on carboxylesterase activity of rat liver microsomes. Chem Biol Interact 2020;327:109148.

38. Wheelock CE, Phillips BM, Anderson BS, Miller JL, Miller MJ, Hammock BD. Applications of carboxylesterase activity in environmental monitoring and toxicity identification evaluations (TIEs). In: Whitacre DM, editor. Reviews of environmental contamination and toxicology. New York: Springer; 2008. pp. 117-78.

39. Marcos-López M, Espinosa Ruiz C, Rodger HD, O’Connor I, MacCarthy E, Esteban MÁ. Local and systemic humoral immune response in farmed Atlantic salmon (Salmo salar L.) under a natural amoebic gill disease outbreak. Fish Shellfish Immun 2017;66:207-16.

40. Satoh T, Hosokawa M. The mammalian carboxylesterases: from molecules to functions. Annu Rev Pharmacol Toxicol 1998;38:257-88.

41. Satoh T, Hosokawa M. Structure, function and regulation of carboxylesterases. Chem Biol Interact 2006;162:195-211.

42. Zou LW, Jin Q, Wang DD, et al. Carboxylesterase inhibitors: an update. Curr Med Chem 2018;25:1627-49.

43. Ghodke VM, Punekar NS. Environmental role of aromatic carboxylesterases. Environ Microbiol 2022;24:2657-68.

44. Zhu G-F. Exposure of bisphenol A (BPA) derivatives affect the metabolic elimination of alzheimer’s diseases treatment drugs. Lat Am J Pharm 2017;36:1753-9. Available from: https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/5498000 [Last accessed on 29 Feb 2024].

45. Fukami T, Takahashi S, Nakagawa N, Maruichi T, Nakajima M, Yokoi T. In vitro evaluation of inhibitory effects of antidiabetic and antihyperlipidemic drugs on human carboxylesterase activities. Drug Metab Dispos 2010;38:2173-8.

46. Shimizu M, Fukami T, Nakajima M, Yokoi T. Screening of specific inhibitors for human carboxylesterases or arylacetamide deacetylase. Drug Metab Dispos 2014;42:1103-9.

47. Solé M, Sanchez-Hernandez JC. An in vitro screening with emerging contaminants reveals inhibition of carboxylesterase activity in aquatic organisms. Aquat Toxicol 2015;169:215-22.

48. Liu YZ, Pan LH, Bai Y, Yang K, Dong PP, Fang ZZ. Per- and polyfluoroalkyl substances exert strong inhibition towards human carboxylesterases. Environ Pollut 2020;263:114463.

49. Nos D, Navarro J, Saiz E, Sanchez-Hernandez JC, Solé M. Tetrabromobisphenol A inhibits carboxylesterase activity of marine organisms from different trophic levels. Chemosphere 2020;238:124592.

50. Albendín MG, Mánuel-Vez MP, Arellano JM. In vivo cholinesterase sensitivity of gilthead seabream (Sparus aurata) exposed to organophosphate compounds: influence of biological factors. Ecol Indic 2021;121:107176.

51. Solé M, Fortuny A, Mañanós E. Effects of selected xenobiotics on hepatic and plasmatic biomarkers in juveniles of Solea senegalensis. Environ Res 2014;135:227-35.

52. Albendín MG, Alarcón I, Coello MD, et al. The effects of exposing Solea senegalensis to microbeads with and without pesticides. Water Air Soil Pollut 2023;234:132.

53. Araújo MJ, Quintaneiro C, Soares AMVM, Monteiro MS. Effects of triclosan on early development of Solea senegalensis: from biochemical to individual level. Chemosphere 2019;235:885-99.

54. Abdel-Tawwab M, Hamed HS. Effect of bisphenol A toxicity on growth performance, biochemical variables, and oxidative stress biomarkers of Nile tilapia, Oreochromis niloticus (L.). J Appl Ichthyol 2018;34:1117-25.

55. de Oliveira Ferreira R, Guimarães ATB, da Luz TM, et al. First report on the toxicity of SARS-CoV-2, alone and in combination with polyethylene microplastics in neotropical fish. Sci Total Environ 2023;882:163617.

56. Brandts I, Teles M, Tvarijonaviciute A, et al. Effects of polymethylmethacrylate nanoplastics on Dicentrarchus labrax. Genomics 2018;110:435-41.

57. Barría C, Brandts I, Tort L, Oliveira M, Teles M. Effect of nanoplastics on fish health and performance: a review. Mar Pollut Bull 2020;151:110791.

58. Hemmert AC, Otto TC, Chica RA, et al. Nerve agent hydrolysis activity designed into a human drug metabolism enzyme. PLoS One 2011;6:e17441.

59. Hatfield MJ, Potter PM. Carboxylesterase inhibitors. Expert Opin Ther Pat 2011;21:1159-71.

60. Sanahuja I, Dallarés S, Ibarz A, Solé M. Multi-organ characterisation of B-esterases in the European sea bass (Dicentrarchus labrax): effects of the insecticide fipronil at two temperatures. Aquat Toxicol 2020;228:105617.

61. Salvaggio A, Tiralongo F, Krasakopoulou E, et al. Biomarkers of exposure to chemical contamination in the commercial fish species Lepidopus caudatus (Euphrasen, 1788): a particular focus on plastic additives. Front Physiol 2019;10:905.

62. Sole M, Bassols A, Labrada-Martagón V. Plasmatic B-esterases as potential biomarkers of exposure to marine plastics in loggerhead turtles. Environ Res 2022;213:113639.

63. Solé M, Freitas R, Viñas L, Rivera-Ingraham GA. Biomarker considerations in monitoring petrogenic pollution using the mussel Mytilus galloprovincialis. Environ Sci Pollut Res Int 2020;27:31854-62.

64. Solé M, Figueres E, Mañanós E, Rojo-Solís C, García-Párraga D. Characterisation of plasmatic B-esterases in bottlenose dolphins (Tursiops truncatus) and their potential as biomarkers of xenobiotic chemical exposures. Environ Pollut 2022;313:120149.

65. Omedes S, Andrade M, Escolar O, Villanueva R, Freitas R, Solé M. B-esterases characterisation in the digestive tract of the common octopus and the European cuttlefish and their in vitro responses to contaminants of environmental concern. Environ Res 2022;210:112961.

66. Dallarés S, Dourado P, Sanahuja I, et al. Multibiomarker approach to fipronil exposure in the fish Dicentrarchus labrax under two temperature regimes. Aquat Toxicol 2020;219:105378.

67. Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88-95.

68. Hosokawa M, Satoh T. Measurement of carboxylesterase (CES) activities. Curr Protoc Toxicol 2002;4:Unit4.7.

69. Mastropaolo W, Yourno J. An ultraviolet spectrophotometric assay for alpha-naphthyl acetate and alpha-naphthyl butyrate esterases. Anal Biochem 1981;115:188-93.

70. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248-54.

71. Benabent M, Vilanova E, Mangas I, Sogorb MÁ, Estévez J. Interaction between substrates suggests a relationship between organophosphorus-sensitive phenylvalerate- and acetylcholine-hydrolyzing activities in chicken brain. Toxicol Lett 2014;230:132-8.

72. Mangas I, Vilanova E, Estévez J. Phenyl valerate esterase activity of human butyrylcholinesterase. Arch Toxicol 2017;91:3295-305.

73. Varò I, Navarro J, Amat F, Guilhermino L. Effect of dichlorvos on cholinesterase activity of the European sea bass (Dicentrarchus labrax). Pestic Biochem Phys 2003;75:61-72.

74. Leticia AG, Gerardo GB. Determination of esterase activity and characterization of cholinesterases in the reef fish Haemulon plumieri. Ecotoxicol Environ Saf 2008;71:787-97.

75. Soto-Mancera F, Arellano JM, Albendín MG. Carboxylesterase in Sparus aurata: characterisation and sensitivity to organophosphorus pesticides and pharmaceutical products. Ecol Indic 2020;109:105603.

76. Valbonesi P, Brunelli F, Mattioli M, Rossi T, Fabbri E. Cholinesterase activities and sensitivity to pesticides in different tissues of silver European eel, Anguilla anguilla. Comp Biochem Physiol C 2011;154:353-9.

77. Solé M, Vega S, Varó I. Characterization of type “B” esterases and hepatic CYP450 isoenzimes in Senegalese sole for their further application in monitoring studies. Ecotoxicol Environ Saf 2012;78:72-9.

78. Koenig S, Guillén K, Solé M. Comparative xenobiotic metabolism capacities and pesticide sensitivity in adults of Solea solea and Solea senegalensis. Comp Biochem Physiol C 2013;157:329-36.

79. Crespo M, Solé M. The use of juvenile Solea solea as sentinel in the marine platform of the Ebre Delta: in vitro interaction of emerging contaminants with the liver detoxification system. Environ Sci Pollut Res Int 2016;23:19229-36.

80. Kristoff G, Barrionuevo DC, Cacciatore LC, Guerrero NR, Cochón AC. In vivo studies on inhibition and recovery of B-esterase activities in Biomphalaria glabrata exposed to azinphos-methyl: analysis of enzyme, substrate and tissue dependence. Aquat Toxicol 2012;112-3:19-26.

81. Brandts I, Solà R, Martins MA, et al. A baseline study on the impact of nanoplastics on the portals of entry of xenobiotics in fish. Mar Pollut Bull 2021;173:113018.

82. Balasch JC, Brandts I, Barría C, et al. Short-term exposure to polymethylmethacrylate nanoplastics alters muscle antioxidant response, development and growth in Sparus aurata. Mar Pollut Bull 2021;172:112918.

83. Nos D, Navarro J, Solé M. The influence of ecological factors in the modulation of pollution biomarkers of two small pelagic marine fish. Mar Pollut Bull 2023;188:114717.

84. Ribalta C, Sanchez-Hernandez JC, Sole M. Hepatic biotransformation and antioxidant enzyme activities in Mediterranean fish from different habitat depths. Sci Total Environ 2015;532:176-83.

85. Schmidt N, Castro-Jiménez J, Oursel B, Sempéré R. Phthalates and organophosphate esters in surface water, sediments and zooplankton of the NW Mediterranean Sea: Exploring links with microplastic abundance and accumulation in the marine food web. Environ Pollut 2021;272:115970.

86. Rios-Fuster B, Arechavala-Lopez P, García-Marcos K, et al. Experimental evidence of physiological and behavioral effects of microplastic ingestion in Sparus aurata. Aquat Toxicol 2021;231:105737.

87. Alomar C, Sanz-Martín M, Compa M, et al. Microplastic ingestion in reared aquaculture fish: biological responses to low-density polyethylene controlled diets in Sparus aurata. Environ Pollut 2021;280:116960.

88. Rodríguez-Romeu O, Soler-Membrives A, Padrós F, et al. Assessment of the health status of the European anchovy (Engraulis encrasicolus) in the NW Mediterranean Sea from an interdisciplinary approach and implications for food safety. Sci Total Environ 2022;841:156539.

89. Wang YQ, Zhang HM, Cao J. Exploring the interactions of decabrominateddiphenyl ether and tetrabromobisphenol A with human serum albumin. Environ Toxicol Pharmacol 2014;38:595-606.

Journal of Environmental Exposure Assessment
ISSN 2771-5949 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/