REFERENCES

1. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022;399:629-55.

2. O’ Neill J. Tackling drug-resistant infections globally: final report and reccomendations. 2016. Available from: https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf [Last accessed on 23 Feb 2024].

3. Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health 2015;109:309-18.

4. WHO. Antimicrobial resistance: global report on surveillance. 2014. Available from: https://www.who.int/publications/i/item/9789241564748 [Last accessed on 23 Feb 2024].

5. Goff DA, Kullar R, Goldstein EJC, et al. A global call from five countries to collaborate in antibiotic stewardship: united we succeed, divided we might fail. Lancet Infect Dis 2017;17:e56-63.

6. Antimicrobial resistance in the EU/EEA (EARS-Net) - annual epidemiological report for 2021. Available from: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2021 [Last accessed on 23 Feb 2024].

7. Allcock S, Young EH, Holmes M, et al. Antimicrobial resistance in human populations: challenges and opportunities. Glob Health Epidemiol Genom 2017;2:e4.

8. O’Neill J. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. 2014. Available from: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf [Last accessed on 23 Feb 2024].

9. Gullberg E, Cao S, Berg OG, et al. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog 2011;7:e1002158.

10. Christaki E, Marcou M, Tofarides A. Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. J Mol Evol 2020;88:26-40.

11. Bleuven C, Landry CR. Molecular and cellular bases of adaptation to a changing environment in microorganisms. Proc Biol Sci 2016;283:20161458.

12. Wright GD. Molecular mechanisms of antibiotic resistance. Chem Commun 2011;47:4055-61.

13. Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 2015;13:42-51.

14. Savageau MA. Escherichia coli habitats, cell types, and molecular mechanisms of gene control. Am Nat 1983;122:732-44.

15. Laxminarayan R, Duse A, Wattal C, et al. Antibiotic resistance-the need for global solutions. Lancet Infect Dis 2013;13:1057-98.

16. Larsson DGJ, Andremont A, Bengtsson-Palme J, et al. Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance. Environ Int 2018;117:132-8.

17. Singer AC, Shaw H, Rhodes V, Hart A. Review of antimicrobial resistance in the environment and its relevance to environmental regulators. Front Microbiol 2016;7:1728.

18. Hiltunen T, Virta M, Laine AL. Antibiotic resistance in the wild: an eco-evolutionary perspective. Philos Trans R Soc Lond B Biol Sci 2017;372:20160039.

19. Woolhouse M, Ward M, van Bunnik B, Farrar J. Antimicrobial resistance in humans, livestock and the wider environment. Philos Trans R Soc Lond B Biol Sci 2015;370:20140083.

20. von Wintersdorff CJH, Penders J, van Niekerk JM, et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol 2016;7:173.

21. Huijbers PM, Blaak H, de Jong MC, Graat EA, Vandenbroucke-Grauls CM, de Roda Husman AM. Role of the environment in the transmission of antimicrobial resistance to humans: a review. Environ Sci Technol 2015;49:11993-2004.

22. Ben W, Wang J, Cao R, Yang M, Zhang Y, Qiang Z. Distribution of antibiotic resistance in the effluents of ten municipal wastewater treatment plants in China and the effect of treatment processes. Chemosphere 2017;172:392-8.

23. Stanton IC, Murray AK, Zhang L, Snape J, Gaze WH. Evolution of antibiotic resistance at low antibiotic concentrations including selection below the minimal selective concentration. Commun Biol 2020;3:467.

24. Kraemer SA, Ramachandran A, Perron GG. Antibiotic pollution in the environment: from microbial ecology to public policy. Microorganisms 2019;7:180.

25. Leonard AF, Zhang L, Balfour AJ, Garside R, Gaze WH. Human recreational exposure to antibiotic resistant bacteria in coastal bathing waters. Environ Int 2015;82:92-100.

26. O’Neill J. Antimicrobials in agriculture and the environment: reducing unnecessary use and waste. 2015. Available from: https://amr-review.org/sites/default/files/Antimicrobials%20in%20agriculture%20and%20the%20environment%20-%20Reducing%20unnecessary%20use%20and%20waste.pdf [Last accessed on 23 Feb 2024].

27. Murray AK, Zhang L, Yin X, et al. Novel insights into selection for antibiotic resistance in complex microbial communities. mBio 2018;9:e00969-18.

28. Westhoff S, van Leeuwe TM, Qachach O, Zhang Z, van Wezel GP, Rozen DE. The evolution of no-cost resistance at sub-MIC concentrations of streptomycin in Streptomyces coelicolor. ISME J 2017;11:1168-78.

29. Zhang Y, Gu AZ, Cen T, et al. Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment. Environ Pollut 2018;237:74-82.

30. Kraemer SA, Barbosa da Costa N, Oliva A, Huot Y, Walsh DA. A resistome survey across hundreds of freshwater bacterial communities reveals the impacts of veterinary and human antibiotics use. Front Microbiol 2022;13:995418.

31. Yang Y, Liu G, Song W, et al. Plastics in the marine environment are reservoirs for antibiotic and metal resistance genes. Environ Int 2019;123:79-86.

32. Auguet O, Pijuan M, Borrego CM, et al. Sewers as potential reservoirs of antibiotic resistance. Sci Total Environ 2017;605-6:1047-54.

33. Carraro E, Bonetta S, Bertino C, Lorenzi E, Bonetta S, Gilli G. Hospital effluents management: chemical, physical, microbiological risks and legislation in different countries. J Environ Manag 2016;168:185-99.

34. Fouz N, Pangesti KNA, Yasir M, et al. The contribution of wastewater to the transmission of antimicrobial resistance in the environment: implications of mass gathering settings. Trop Med Infect Dis 2020;5:33.

35. Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO, Dantas G. The shared antibiotic resistome of soil bacteria and human pathogens. Science 2012;337:1107-11.

36. Andrade L, Kelly M, Hynds P, Weatherill J, Majury A, O’Dwyer J. Groundwater resources as a global reservoir for antimicrobial-resistant bacteria. Water Res 2020;170:115360.

37. Ramirez AJ, Brain RA, Usenko S, et al. Occurrence of pharmaceuticals and personal care products in fish: results of a national pilot study in the United States. Environ Toxicol Chem 2009;28:2587-97.

38. Rovira P, McAllister T, Lakin SM, et al. Characterization of the microbial resistome in conventional and “raised without antibiotics” beef and dairy production systems. Front Microbiol 2019;10:1980.

39. Doron A, Broom A. The spectre of superbugs: waste, structural violence and antimicrobial resistance in India. Worldwide Waste 2019;2:7.

40. Call DR, Matthews L, Subbiah M, Liu J. Do antibiotic residues in soils play a role in amplification and transmission of antibiotic resistant bacteria in cattle populations? Front Microbiol 2013;4:193.

41. Amos GC, Hawkey PM, Gaze WH, Wellington EM. Waste water effluent contributes to the dissemination of CTX-M-15 in the natural environment. J Antimicrob Chemother 2014;69:1785-91.

42. Andy IE, Okpo EA. Occurrence and antibiogram of bacteria isolated from effluent and waste dump site soil of selected hospitals in Calabar Metropolis, Nigeria. Microbiol Res J Int 2018;25:1-9.

43. Westphal-Settele K, Konradi S, Balzer F, Schönfeld J, Schmithausen R. Die umwelt als reservoir für antibiotikaresistenzen. Ein wachsendes problem für die öffentliche gesundheit? The environment as a reservoir for antimicrobial resistance: a growing problem for public health? Bundesgesundheitsbla 2018;61:533-42.

44. Martinez JL. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut 2009;157:2893-902.

45. Berendsen BJ, Wegh RS, Memelink J, Zuidema T, Stolker LA. The analysis of animal faeces as a tool to monitor antibiotic usage. Talanta 2015;132:258-68.

46. Hendriksen RS, Munk P, Njage P, et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat Commun 2019;10:1124.

47. Meyer E, Gastmeier P, Deja M, Schwab F. Antibiotic consumption and resistance: data from Europe and Germany. Int J Med Microbiol 2013;303:388-95.

48. Novo A, André S, Viana P, Nunes OC, Manaia CM. Antibiotic resistance, antimicrobial residues and bacterial community composition in urban wastewater. Water Res 2013;47:1875-87.

49. Health Agency of Canada; in participation with the Canadian Food Inspection Agency; Canadian Institutes of Health Research; Health Canada; Agriculture and Agri-Food Canada. Antimicrobial resistance and use in Canada: a federal framework for action. Can Commun Dis Rep 2014;40:S-2.

50. Larsson DGJ, Gaze WH, Laxminarayan R, Topp E. AMR, one health and the environment. Nat Microbiol 2023;8:754-5.

51. Tacconelli E, Sifakis F, Harbarth S, et al. EPI-Net COMBACTE-MAGNET Group. Surveillance for control of antimicrobial resistance. Lancet Infect Dis 2018;18:e99-106.

52. World Health Organization. Global action plan on antimicrobial resistance. 2016; pp. 1-28. Available from: https://www.who.int/publications/i/item/9789241509763 [Last accessed on 23 Feb 2024].

53. Grundmann H, Klugman KP, Walsh T, et al. A framework for global surveillance of antibiotic resistance. Drug Resist Updat 2011;14:79-87.

54. Gaze WH, Leonard A. Stanton I. et al. Towards developing an international environmental AMR surveillance strategy. 2022. Available from: https://www.researchgate.net/publication/363647959_Towards_developing_an_international_environmental_AMR_surveillance_strategy [Last accessed on 23 Feb 2024].

55. Sims N, Kasprzyk-Hordern B. Future perspectives of wastewater-based epidemiology: monitoring infectious disease spread and resistance to the community level. Environ Int 2020;139:105689.

56. Seale AC, Hutchison C, Fernandes S, et al. Supporting surveillance capacity for antimicrobial resistance: laboratory capacity strengthening for drug resistant infections in low and middle income countries. Wellcome Open Res 2017;2:91.

57. AURA 2019: third Australian report on antimicrobial use and resistance in human health. Available from: https://www.safetyandquality.gov.au/aura-2019 [Last accessed on 23 Feb 2024].

58. World Health Organization. Global antimicrobial resistance and use surveillance system (GLASS) report: 2022. Available from: https://www.who.int/publications/i/item/9789240062702 [Last accessed on 23 Feb 2024].

59. Aenishaenslin C, Häsler B, Ravel A, Parmley J, Stärk K, Buckeridge D. Evidence needed for antimicrobial resistance surveillance systems. Bull World Health Organ 2019;97:283-9.

60. Durso LM, Cook KL. One health and antibiotic resistance in agroecosystems. Ecohealth 2019;16:414-9.

61. Webb HE, Angulo FJ, Granier SA, Scott HM, Loneragan GH. Illustrative examples of probable transfer of resistance determinants from food animals to humans: streptothricins, glycopeptides, and colistin. F1000Res 2017;6:1805.

62. Canada PHAo. Canadian integrated program for antimicrobial resistance surveillance (CIPARS). Annual report 2008. Available from: https://www.phac-aspc.gc.ca/cipars-picra/2008/pdf/cipars-picra-2008-eng.pdf [Last accessed on 23 Feb 2024].

63. Centers for Disease Control and Prevention. National antimicrobial resistance monitoring system for enteric bacteria (NARMS). 2023. Available from: https://www.cdc.gov/narms/index.html [Last accessed on 23 Feb 2024].

64. Ahrenfeldt J, Waisi M, Loft IC, et al. Metaphylogenetic analysis of global sewage reveals that bacterial strains associated with human disease show less degree of geographic clustering. Sci Rep 2020;10:3033.

65. Hall W, Prichard J, Kirkbride P, et al. An analysis of ethical issues in using wastewater analysis to monitor illicit drug use. Addiction 2012;107:1767-73.

66. Centre for Disease Control and Prevention. National wastewater surveillance system. 2023. Available from: https://www.cdc.gov/nwss/wastewater-surveillance.html [Last accessed on 23 Feb 2024].

67. Castrignanò E, Yang Z, Feil EJ, et al. Enantiomeric profiling of quinolones and quinolones resistance gene qnrS in European wastewaters. Water Res 2020;175:115653.

68. O’Brien JW, Grant S, Banks APW, et al. A National wastewater monitoring program for a better understanding of public health: a case study using the Australian census. Environ Int 2019;122:400-11.

69. Gracia-Lor E, Rousis NI, Hernández F, Zuccato E, Castiglioni S. Wastewater-based epidemiology as a novel biomonitoring tool to evaluate human exposure to pollutants. Environ Sci Technol 2018;52:10224-6.

70. Choi PM, Tscharke BJ, Donner E, et al. Wastewater-based epidemiology biomarkers: past, present and future. TrAC Trends Anal Chem 2018;105:453-69.

71. Daughton CG. Illicit drugs in municipal sewage: proposed new nonintrusive tool to heighten public awareness of societal use of illicit-abused drugs and their potential for ecological consequences. ACS Symp Ser 2001;791:348-64.

72. Zuccato E, Chiabrando C, Castiglioni S, Bagnati R, Fanelli R. Estimating community drug abuse by wastewater analysis. Environ Health Perspect 2008;116:1027-32.

73. Thomas KV, Bijlsma L, Castiglioni S, et al. Comparing illicit drug use in 19 European cities through sewage analysis. Sci Total Environ 2012;432:432-9.

74. Choi PM, Tscharke B, Samanipour S, et al. Social, demographic, and economic correlates of food and chemical consumption measured by wastewater-based epidemiology. Proc Natl Acad Sci USA 2019;116:21864-73.

75. Lai FY, Gartner C, Hall W, et al. Measuring spatial and temporal trends of nicotine and alcohol consumption in Australia using wastewater-based epidemiology. Addiction 2018;113:1127-36.

76. Tscharke BJ, White JM, Gerber JP. Estimates of tobacco use by wastewater analysis of anabasine and anatabine. Drug Test Anal 2016;8:702-7.

77. Halden R, Terlinden E, Kraberger S, Scotch M, Steele J, Varsani A. Tracking harmful chemicals and pathogens using the human health observatory at ASU. 2019. Available from: https://ojphi.org/ojs/index.php/ojphi/article/view/9843 [Last accessed on 23 Feb 2024].

78. Boleda MR, Galceran MT, Ventura F. Trace determination of cannabinoids and opiates in wastewater and surface waters by ultra-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2007;1175:38-48.

79. Castiglioni S, Zuccato E, Crisci E, Chiabrando C, Fanelli R, Bagnati R. Identification and measurement of illicit drugs and their metabolites in urban wastewater by liquid chromatography-tandem mass spectrometry. Anal Chem 2006;78:8421-9.

80. Boogaerts T, Covaci A, Kinyua J, Neels H, van Nuijs AL. Spatial and temporal trends in alcohol consumption in Belgian cities: a wastewater-based approach. Drug Alcohol Depend 2016;160:170-6.

81. Reid MJ, Langford KH, Mørland J, Thomas KV. Analysis and interpretation of specific ethanol metabolites, ethyl sulfate, and ethyl glucuronide in sewage effluent for the quantitative measurement of regional alcohol consumption. Alcohol Clin Exp Res 2011;35:1593-9.

82. Rodríguez-Álvarez T, Rodil R, Rico M, Cela R, Quintana JB. Assessment of local tobacco consumption by liquid chromatography-tandem mass spectrometry sewage analysis of nicotine and its metabolites, cotinine and trans-3’-hydroxycotinine, after enzymatic deconjugation. Anal Chem 2014;86:10274-81.

83. Ahmed W, Tscharke B, Bertsch PM, et al. SARS-CoV-2 RNA monitoring in wastewater as a potential early warning system for COVID-19 transmission in the community: a temporal case study. Sci Total Environ 2021;761:144216.

84. Bade R, White JM, Nguyen L, et al. Determining changes in new psychoactive substance use in Australia by wastewater analysis. Sci Total Environ 2020;731:139209.

85. Reid MJ, Derry L, Thomas KV. Analysis of new classes of recreational drugs in sewage: synthetic cannabinoids and amphetamine-like substances. Drug Test Anal 2014;6:72-9.

86. Daughton CG. Monitoring wastewater for assessing community health: sewage chemical-information mining (SCIM). Sci Total Environ 2018;619-20:748-64.

87. O’Brien JW, Tscharke BJ, Bade R, et al. A wastewater-based assessment of the impact of a minimum unit price (MUP) on population alcohol consumption in the Northern Territory, Australia. Addiction 2022;117:243-9.

88. Aarestrup FM, Woolhouse MEJ. Using sewage for surveillance of antimicrobial resistance. Science 2020;367:630-2.

89. Robins K, Leonard AFC, Farkas K, et al. Research needs for optimising wastewater-based epidemiology monitoring for public health protection. J Water Health 2022;20:1284-313.

90. Holton E, Louw C, Archer E, Louw T, Wolfaardt G, Kasprzyk-Hordern B. Quantifying community-wide antibiotic usage via urban water fingerprinting: focus on contrasting resource settings in South Africa. Water Res 2023;240:120110.

91. Xu L, Zang J, Cong W, et al. Assessment of community-wide antimicrobials usage in Eastern China using wastewater-based epidemiology. Water Res 2022;222:118942.

92. Rahman Z, Liu W, Stapleton L, et al. Wastewater-based monitoring reveals geospatial-temporal trends for antibiotic-resistant pathogens in a large urban community. Environ Pollut 2023;325:121403.

93. Thai PK, O’Brien JW, Banks APW, et al. Evaluating the in-sewer stability of three potential population biomarkers for application in wastewater-based epidemiology. Sci Total Environ 2019;671:248-53.

94. Berendonk TU, Manaia CM, Merlin C, et al. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol 2015;13:310-7.

95. Laht M, Karkman A, Voolaid V, et al. Abundances of tetracycline, sulphonamide and beta-lactam antibiotic resistance genes in conventional wastewater treatment plants (WWTPs) with different waste load. PLoS One 2014;9:e103705.

96. Li J, Shimko KM, He C, et al. Direct injection liquid chromatography-tandem mass spectrometry as a sensitive and high-throughput method for the quantitative surveillance of antimicrobials in wastewater. Sci Total Environ 2023;900:165825.

97. Ort C, Lawrence MG, Rieckermann J, Joss A. Sampling for pharmaceuticals and personal care products (PPCPs) and illicit drugs in wastewater systems: are your conclusions valid? A critical review. Environ Sci Technol 2010;44:6024-35.

98. Lin X, Choi PM, Thompson J, et al. Systematic evaluation of the in-sample stability of selected pharmaceuticals, illicit drugs, and their metabolites in wastewater. Environ Sci Technol 2021;55:7418-29.

99. Schiebelhut LM, Abboud SS, Gómez Daglio LE, Swift HF, Dawson MN. A comparison of DNA extraction methods for high-throughput DNA analyses. Mol Ecol Resour 2017;17:721-9.

100. Tanase AM, Mereuta I, Chiciudean I, et al. Comparison of total DNA extraction methods for microbial community form polluted soil. Agric Agric Sci Procedia 2015;6:616-22.

101. Zielińska S, Radkowski P, Blendowska A, Ludwig-Gałęzowska A, Łoś JM, Łoś M. The choice of the DNA extraction method may influence the outcome of the soil microbial community structure analysis. Microbiologyopen 2017;6:e00453.

102. Berendsen BJ, Elbers IJ, Stolker AA. Determination of the stability of antibiotics in matrix and reference solutions using a straightforward procedure applying mass spectrometric detection. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2011;28:1657-66.

103. McCall AK, Bade R, Kinyua J, et al. Critical review on the stability of illicit drugs in sewers and wastewater samples. Water Res 2016;88:933-47.

104. Yang Z, Castrignanò E, Estrela P, Frost CG, Kasprzyk-Hordern B. Community sewage sensors towards evaluation of drug use trends: detection of cocaine in wastewater with DNA-directed immobilization aptamer sensors. Sci Rep 2016;6:21024.

105. Tscharke BJ, O’Brien JW, Ort C, et al. Harnessing the power of the census: characterizing wastewater treatment plant catchment populations for wastewater-based epidemiology. Environ Sci Technol 2019;53:10303-11.

106. O’Brien JW, Thai PK, Eaglesham G, et al. A model to estimate the population contributing to the wastewater using samples collected on census day. Environ Sci Technol 2014;48:517-25.

107. Dutta E, Loy JD, Deal CA, et al. Development of a multiplex real-time PCR assay for predicting macrolide and tetracycline resistance associated with bacterial pathogens of bovine respiratory disease. Pathogens 2021;10:64.

108. Ciannella S, González-Fernández C, Gomez-Pastora J. Recent progress on wastewater-based epidemiology for COVID-19 surveillance: a systematic review of analytical procedures and epidemiological modeling. Sci Total Environ 2023;878:162953.

109. Jiménez-Rodríguez MG, Silva-Lance F, Parra-Arroyo L, et al. Biosensors for the detection of disease outbreaks through wastewater-based epidemiology. Trends Anal Chem 2022;155:116585.

110. Bauer S. Societal and ethical issues in human biomonitoring-a view from science studies. Environ Health 2008;7:S10.

111. Prichard J, Hall W, Zuccato E, et al. Ethical research guidelines for wastewater-based epidemiology and related fields. 2015. Available from: https://qaehs.centre.uq.edu.au/files/880/WBE%20Ethical%20Guidelines.pdf [Last accessed on 23 Feb 2024].

112. Carneiro J, Pascoal F, Semedo M, et al. Mapping human pathogens in wastewater using a metatranscriptomic approach. Environ Res 2023;231:116040.

113. Schaeffer J, Desdouits M, Besnard A, Le Guyader FS. Looking into sewage: how far can metagenomics help to detect human enteric viruses? Front Microbiol 2023;14:1161674.

114. da Silva M, Vaz-Moreira I, Gonzalez-Pajuelo M, Nunes OC, Manaia CM. Antimicrobial resistance patterns in Enterobacteriaceae isolated from an urban wastewater treatment plant. FEMS Microbiol Ecol 2007;60:166-76.

115. Savin M, Bierbaum G, Hammerl JA, et al. Antibiotic-resistant bacteria and antimicrobial residues in wastewater and process water from German pig slaughterhouses and their receiving municipal wastewater treatment plants. Sci Total Environ 2020;727:138788.

116. Varela AR, André S, Nunes OC, Manaia CM. Insights into the relationship between antimicrobial residues and bacterial populations in a hospital-urban wastewater treatment plant system. Water Res 2014;54:327-36.

117. Coutu S, Wyrsch V, Wynn HK, Rossi L, Barry DA. Temporal dynamics of antibiotics in wastewater treatment plant influent. Sci Total Environ 2013;458-60:20-6.

118. Golovko O, Kumar V, Fedorova G, Randak T, Grabic R. Seasonal changes in antibiotics, antidepressants/psychiatric drugs, antihistamines and lipid regulators in a wastewater treatment plant. Chemosphere 2014;111:418-26.

119. Ekwanzala MD, Lehutso RF, Kasonga TK, Dewar JB, Momba MNB. Environmental dissemination of selected antibiotics from hospital wastewater to the aquatic environment. Antibiotics 2020;9:431.

120. Li Y, Taggart MA, McKenzie C, et al. A SPE-HPLC-MS/MS method for the simultaneous determination of prioritised pharmaceuticals and EDCs with high environmental risk potential in freshwater. J Environ Sci 2021;100:18-27.

121. Serra-Compte A, Pikkemaat MG, Elferink A, et al. Combining an effect-based methodology with chemical analysis for antibiotics determination in wastewater and receiving freshwater and marine environment. Environ Pollut 2021;271:116313.

122. Keshaviah A, Hu XC, Henry M. Developing a flexible national wastewater surveillance system for COVID-19 and beyond. Environ Health Perspect 2021;129:45002.

123. Nourbakhsh S, Fazil A, Li M, et al. A wastewater-based epidemic model for SARS-CoV-2 with application to three Canadian cities. Epidemics 2022;39:100560.

124. Field E, Dyda A, Hewett M, et al. Development of the COVID-19 real-time information system for preparedness and epidemic response (CRISPER), Australia. Front Public Health 2021;9:753493.

125. Fernandez-Cassi X, Timoneda N, Martínez-Puchol S, et al. Metagenomics for the study of viruses in urban sewage as a tool for public health surveillance. Sci Total Environ 2018;618:870-80.

126. Petrovich ML, Zilberman A, Kaplan A, et al. Microbial and viral communities and their antibiotic resistance genes throughout a hospital wastewater treatment system. Front Microbiol 2020;11:153.

127. Yasir M. Analysis of microbial communities and pathogen detection in domestic sewage using metagenomic sequencing. Diversity 2021;13:6.

128. Yoo K, Yoo H, Lee J, Choi EJ, Park J. Exploring the antibiotic resistome in activated sludge and anaerobic digestion sludge in an urban wastewater treatment plant via metagenomic analysis. J Microbiol 2020;58:123-30.

129. Smith R, Coast J. The true cost of antimicrobial resistance. BMJ 2013;346:f1493.

130. Alekshun MN, Levy SB. Molecular mechanisms of antibacterial multidrug resistance. Cell 2007;128:1037-50.

131. Mao D, Yu S, Rysz M, et al. Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants. Water Res 2015;85:458-66.

132. Rodriguez-Mozaz S, Chamorro S, Marti E, et al. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res 2015;69:234-42.

133. Sun Y, Shen YX, Liang P, Zhou J, Yang Y, Huang X. Multiple antibiotic resistance genes distribution in ten large-scale membrane bioreactors for municipal wastewater treatment. Bioresour Technol 2016;222:100-6.

134. Gao P, Munir M, Xagoraraki I. Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. Sci Total Environ 2012;421-2:173-83.

135. Sims N, Kannan A, Holton E, et al. Antimicrobials and antimicrobial resistance genes in a one-year city metabolism longitudinal study using wastewater-based epidemiology. Environ Pollut 2023;333:122020.

136. Xu J, Xu Y, Wang H, et al. Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. Chemosphere 2015;119:1379-85.

137. Elder FCT, Proctor K, Barden R, et al. Spatiotemporal profiling of antibiotics and resistance genes in a river catchment: Human population as the main driver of antibiotic and antibiotic resistance gene presence in the environment. Water Res 2021;203:117533.

138. BioRender. Adapted from “FullTemplateName”. 2023. Available from: https://www.biorender.com/ [Last accessed on 23 Feb 2024].

139. Holton E, Sims N, Jagadeesan K, Standerwick R, Kasprzyk-Hordern B. Quantifying community-wide antimicrobials usage via wastewater-based epidemiology. J Hazard Mater 2022;436:129001.

140. Manoharan RK, Srinivasan S, Shanmugam G, Ahn YH. Shotgun metagenomic analysis reveals the prevalence of antibiotic resistance genes and mobile genetic elements in full scale hospital wastewater treatment plants. J Environ Manag 2021;296:113270.

141. Prieto Riquelme MV, Garner E, Gupta S, et al. Demonstrating a comprehensive wastewater-based surveillance approach that differentiates globally sourced resistomes. Environ Sci Technol 2022;56:14982-93.

142. Che Y, Xia Y, Liu L, Li AD, Yang Y, Zhang T. Mobile antibiotic resistome in wastewater treatment plants revealed by Nanopore metagenomic sequencing. Microbiome 2019;7:44.

143. Makowska N, Philips A, Dabert M, et al. Metagenomic analysis of β-lactamase and carbapenemase genes in the wastewater resistome. Water Res 2020;170:115277.

144. Rhoads A, Au KF. PacBio sequencing and its applications. Genom Proteom Bioinf 2015;13:278-89.

145. Kanwar N, Blanco C, Chen IA, Seelig B. PacBio sequencing output increased through uniform and directional fivefold concatenation. Sci Rep 2021;11:18065.

146. Zhang L, Chen F, Zeng Z, et al. Advances in metagenomics and its application in environmental microorganisms. Front Microbiol 2021;12:766364.

147. New FN, Brito IL. What is metagenomics teaching us, and what is missed? Annu Rev Microbiol 2020;74:117-35.

148. Al-Jassim N, Ansari MI, Harb M, Hong PY. Removal of bacterial contaminants and antibiotic resistance genes by conventional wastewater treatment processes in Saudi Arabia: is the treated wastewater safe to reuse for agricultural irrigation? Water Res 2015;73:277-90.

149. Quintela-Baluja M, Abouelnaga M, Romalde J, et al. Spatial ecology of a wastewater network defines the antibiotic resistance genes in downstream receiving waters. Water Res 2019;162:347-57.

150. Munk P, Brinch C, Møller FD, et al. Global Sewage Surveillance Consortium. Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance. Nat Commun 2022;13:7251.

151. Majlander J, Anttila VJ, Nurmi W, Seppälä A, Tiedje J, Muziasari W. Routine wastewater-based monitoring of antibiotic resistance in two finnish hospitals: focus on carbapenem resistance genes and genes associated with bacteria causing hospital-acquired infections. J Hosp Infect 2021;117:157-64.

152. Wang Q, Wang P, Yang Q. Occurrence and diversity of antibiotic resistance in untreated hospital wastewater. Sci Total Environ 2018;621:990-9.

153. Mtetwa HN, Amoah ID, Kumari S, Bux F, Reddy P. Wastewater-based surveillance of antibiotic resistance genes associated with tuberculosis treatment regimen in kwazulu natal, South Africa. Antibiotics 2021;10:1362.

154. Ou Y, Cao S, Zhang J, Dong W, Yang Z, Yu Z. Droplet microfluidics on analysis of pathogenic microbes for wastewater-based epidemiology. Trends Anal Chem 2021;143:116333.

Journal of Environmental Exposure Assessment
ISSN 2771-5949 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/