REFERENCES
1. Zhang N, Chen X, Yu M, Niu Z, Cheng F, Chen J. Materials chemistry for rechargeable zinc-ion batteries. Chem Soc Rev 2020;49:4203-19.
2. Chao D, Zhou W, Xie F, et al. Roadmap for advanced aqueous batteries: from design of materials to applications. Sci Adv 2020;6:eaba4098.
3. Yao H, Yu H, Zheng Y, et al. Pre-intercalation of ammonium ions in layered δ-MnO2 nanosheets for high-performance aqueous zinc-ion batteries. Angew Chem Int Ed 2023;62:e202315257.
4. Zhao Y, Zhang S, Zhang Y, et al. Vacancy-rich Al-doped MnO2 cathodes break the trade-off between kinetics and stability for high-performance aqueous Zn-ion batteries. Energy Environ Sci 2024;17:1279-90.
5. Zhong C, Liu B, Ding J, et al. Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc-manganese dioxide batteries. Nat Energy 2020;5:440-9.
6. Li H, Zhang F, Wei W, et al. Promoting air stability of Li anode via an artificial organic/inorganic hybrid layer for dendrite-free lithium batteries. Adv Energy Mater 2023;13:2301023.
7. Wu F, Maier J, Yu Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem Soc Rev 2020;49:1569-614.
8. Jing F, Liu Y, Shang Y, et al. Dual ions intercalation drives high-performance aqueous Zn-ion storage on birnessite-type manganese oxides cathode. Energy Stor Mater 2022;49:164-71.
9. Yang X, Wang X, Xiang Y, Ma L, Huang W. Asymmetric electrolytes design for aqueous multivalent metal ion batteries. Nanomicro Lett 2023;16:51.
10. Chen S, Zhao D, Chen L, et al. Emerging intercalation cathode materials for multivalent metal-ion batteries: status and challenges. Small Struct 2021;2:2100082.
11. Pan Z, Liu X, Yang J, et al. Aqueous rechargeable multivalent metal-ion batteries: advances and challenges. Adv Energy Mater 2021;11:2100608.
12. Liang Y, Dong H, Aurbach D, Yao Y. Current status and future directions of multivalent metal-ion batteries. Nat Energy 2020;5:646-56.
13. Liu Z, Qin L, Cao X, et al. Ion migration and defect effect of electrode materials in multivalent-ion batteries. Prog Mater Sci 2022;125:100911.
14. Zhang CJ, Anasori B, Seral-Ascaso A, et al. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv Mater 2017;29:1702678.
15. Amiri A, Chen Y, Bee Teng C, Naraghi M. Porous nitrogen-doped MXene-based electrodes for capacitive deionization. Energy Stor Mater 2020;25:731-9.
16. Ling Z, Ren CE, Zhao MQ, et al. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc Natl Acad Sci USA 2014;111:16676-81.
17. An Y, Tian Y, Shen H, Man Q, Xiong S, Feng J. Two-dimensional MXenes for flexible energy storage devices. Energy Environ Sci 2023;16:4191-250.
18. Abid MZ, Rafiq K, Aslam A, Jin R, Hussain E. Scope, evaluation and current perspectives of MXene synthesis strategies for state of the art applications. J Mater Chem A 2024;12:7351-95.
19. Jing H, Yeo H, Lyu B, et al. Modulation of the electronic properties of MXene (Ti3C2Tx) via surface-covalent functionalization with diazonium. ACS Nano 2021;15:1388-96.
20. Tian Y, An Y, Feng J, Qian Y. MXenes and their derivatives for advanced aqueous rechargeable batteries. Mater Today 2022;52:225-49.
21. Liu H, Ma Y, Cao B, Zhu Q, Xu B. Recent progress of MXenes in aqueous zinc-ion batteries. Acta Phys Chim Sin 2023;39:2210027.
22. Liu P, Liu W, Liu K. Rational modulation of emerging MXene materials for zinc-ion storage. Carbon Energy 2022;4:60-76.
23. Javed MS, Mateen A, Ali S, et al. The emergence of 2D MXenes based Zn-ion batteries: recent development and prospects. Small 2022;18:e2201989.
24. Wei C, Tao Y, An Y, et al. Recent advances of emerging 2D MXene for stable and dendrite-free metal anodes. Adv Funct Mater 2020;30:2004613.
25. Zheng S, Zhao W, Chen J, Zhao X, Pan Z, Yang X. 2D materials boost advanced Zn anodes: principles, advances, and challenges. Nanomicro Lett 2023;15:46.
26. Wang C, Pan Z, Chen H, Pu X, Chen Z. MXene-based materials for multivalent metal-ion batteries. Batteries 2023;9:174.
27. Liu H, Zhang X, Zhu Y, et al. Electrostatic self-assembly of 0D-2D SnO2 quantum dots/Ti3C2Tx MXene hybrids as anode for lithium-ion batteries. Nanomicro Lett 2019;11:65.
28. Xiong D, Shi Y, Yang HY. Rational design of MXene-based films for energy storage: progress, prospects. Mater Today 2021;46:183-211.
29. Bashir T, Zhou S, Yang S, et al. Progress in 3D-MXene electrodes for lithium/sodium/potassium/magnesium/zinc/aluminum-ion batteries. Electrochem Energy Rev 2023;6:5.
30. Liu Z, Zhang Y, Zhang HB, et al. Electrically conductive aluminum ion-reinforced MXene films for efficient electromagnetic interference shielding. J Mater Chem C 2020;8:1673-8.
31. Wang Y, Song J, Wong WY. Constructing 2D sandwich-like MOF/MXene heterostructures for durable and fast aqueous zinc-ion batteries. Angew Chem Int Ed 2023;62:e202218343.
32. Wang C, Chen S, Song L. Tuning 2D MXenes by surface controlling and interlayer engineering: methods, properties, and synchrotron radiation characterizations. Adv Funct Mater 2020;30:2000869.
33. Dall'agnese Y, Lukatskaya MR, Cook KM, Taberna P, Gogotsi Y, Simon P. High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochem Commun 2014;48:118-22.
34. Chen C, Wang T, Zhao X, et al. Customizing hydrophilic terminations for V2CTx MXene toward superior hybrid-ion storage in aqueous zinc batteries. Adv Funct Mater 2024;34:2308508.
35. Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 2011;23:4248-53.
36. Pang SY, Wong YT, Yuan S, et al. Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J Am Chem Soc 2019;141:9610-6.
37. Ghidiu M, Lukatskaya MR, Zhao MQ, Gogotsi Y, Barsoum MW. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance. Nature 2014;516:78-81.
38. Wu M, He M, Hu Q, et al. Ti3C2 MXene-based sensors with high selectivity for NH3 detection at room temperature. ACS Sens 2019;4:2763-70.
39. Liu F, Zhou A, Chen J, et al. Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties. Appl Surf Sci 2017;416:781-9.
40. Liu D, Wang L, He Y, et al. Enhanced reversible capacity and cyclic performance of lithium-ion batteries using SnO2 interpenetrated MXene V2C architecture as anode materials. Energy Technol 2021;9:2000753.
41. Wang X, Garnero C, Rochard G, et al. A new etching environment (FeF3/HCl) for the synthesis of two-dimensional titanium carbide MXenes: a route towards selective reactivity vs. water. J Mater Chem A 2017;5:22012-23.
42. Urbankowski P, Anasori B, Makaryan T, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 2016;8:11385-91.
43. Natu V, Pai R, Sokol M, Carey M, Kalra V, Barsoum MW. 2D Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents. Chem 2020;6:616-30.
44. Yang S, Zhang P, Wang F, et al. Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew Chem Int Ed 2018;57:15491-5.
45. Li T, Yao L, Liu Q, et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment. Angew Chem Int Ed 2018;57:6115-9.
46. Li M, Lu J, Luo K, et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J Am Chem Soc 2019;141:4730-7.
47. Jawaid A, Hassan A, Neher G, et al. Halogen etch of Ti3AlC2 MAX phase for MXene fabrication. ACS Nano 2021;15:2771-7.
48. Li J, Wang C, Yu Z, Chen Y, Wei L. MXenes for zinc-based electrochemical energy storage devices. Small 2023:e2304543.
49. Geng D, Zhao X, Chen Z, et al. Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Adv Mater 2017;29:1702678.
50. Zhang F, Zhang Z, Wang H, et al. Plasma-enhanced pulsed-laser deposition of single-crystalline Mo2C ultrathin superconducting films. Phys Rev Mater 2017;1:034002.
51. Xiao X, Yu H, Jin H, et al. Salt-templated synthesis of 2D metallic MoN and other nitrides. ACS Nano 2017;11:2180-6.
52. Wang Q, Yuan H, Zhang M, et al. A highly conductive and supercapacitive MXene/N-CNT electrode material derived from a MXene-co-melamine precursor. ACS Appl Electron Mater 2023;5:2506-17.
53. Xu M, Lei S, Qi J, et al. Opening magnesium storage capability of two-dimensional MXene by intercalation of cationic surfactant. ACS Nano 2018;12:3733-40.
54. Miao Z, Zhang F, Zhao H, et al. Tailoring local electrolyte solvation structure via a mesoporous molecular sieve for dendrite-free zinc batteries. Adv Funct Mater 2022;32:2111635.
55. Kang Y, Zhang F, Li H, et al. Modulating the electrolyte inner solvation structure via low polarity co-solvent for low-temperature aqueous zinc-ion batteries. Energy Environ Mater 2024:e12707.
56. Du M, Zhang F, Zhang X, et al. Calcium ion pinned vanadium oxide cathode for high-capacity and long-life aqueous rechargeable zinc-ion batteries. Sci China Chem 2020;63:1767-76.
57. Miao Z, Du M, Li H, et al. Constructing nano-channeled tin layer on metal zinc for high-performance zinc-ion batteries anode. EcoMat 2021;3:e12125.
58. Wei W, Zhang F, Li H, et al. Modulating the solvation structure and electrode interface through phosphate additive for highly reversible zinc metal anode. Chem Eng J 2024;485:149944.
59. Miao Z, Liu Q, Wei W, et al. Unveiling unique steric effect of threonine additive for highly reversible Zn anode. Nano Energy 2022;97:107145.
60. Wang C, Xie H, Chen S, et al. Atomic cobalt covalently engineered interlayers for superior lithium-ion storage. Adv Mater 2018;30:e1802525.
61. Li M, Li X, Qin G, et al. Halogenated Ti3C2 MXenes with electrochemically active terminals for high-performance zinc ion batteries. ACS Nano 2021;15:1077-85.
62. Liu Y, Jiang Y, Hu Z, et al. In-situ electrochemically activated surface vanadium valence in V2C MXene to achieve high capacity and superior rate performance for Zn-ion batteries. Adv Funct Mater 2021;31:2008033.
63. Li X, Li M, Yang Q, et al. In situ electrochemical synthesis of MXenes without acid/alkali usage in/for an aqueous zinc ion battery. Adv Energy Mater 2020;10:2001791.
64. Guan J, Shao L, Yu L, et al. Two-dimensional Mg0.2V2O5·nH2O nanobelts derived from V4C3 MXenes for highly stable aqueous zinc ion batteries. Chem Eng J 2022;443:136502.
65. Zhu X, Wang W, Cao Z, et al. Zn2+-intercalated V2O5·nH2O derived from V2CTx MXene for hyper-stable zinc-ion storage. J Mater Chem A 2021;9:17994-8005.
66. Zhu X, Cao Z, Li X, et al. Ion-intercalation regulation of MXene-derived hydrated vanadates for high-rate and long-life Zn-Ion batteries. Energy Stor Mater 2022;45:568-77.
67. Sha D, Lu C, He W, et al. Surface selenization strategy for V2CTx MXene toward superior Zn-ion storage. ACS Nano 2022;16:2711-20.
68. Elia GA, Marquardt K, Hoeppner K, et al. An overview and future perspectives of aluminum batteries. Adv Mater 2016;28:7564-79.
69. Wang Y, Gu H, Lu Y, Zhang W, Li Z. The synergistic effect of Lewis acidic etching V4C3(MXene)@CuSe2/CoSe2 as an advanced cathode material for aluminum batteries. J Mater Sci Technol 2024;177:205-13.
70. Zhao S, Dall’agnese Y, Chu X, Zhao X, Gogotsi Y, Gao Y. Electrochemical interaction of Sn-containing MAX phase (Nb2SnC) with Li-ions. ACS Energy Lett 2019;4:2452-7.
71. Zhao MQ, Xie X, Ren CE, et al. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv Mater 2017;29:1702410.
72. Wu Y, Sun Y, Zheng J, Rong J, Li H, Niu L. MXenes: advanced materials in potassium ion batteries. Chem Eng J 2021;404:126565.
73. Li J, Zeng F, El-Demellawi JK, et al. Nb2CTx MXene cathode for high-capacity rechargeable aluminum batteries with prolonged cycle lifetime. ACS Appl Mater Interfaces 2022;14:45254-62.
74. Wang L, Wang J, Ouyang B. Computational investigation of MAX as intercalation host for rechargeable aluminum-ion battery. Adv Energy Mater 2023;13:2302584.
75. VahidMohammadi A, Hadjikhani A, Shahbazmohamadi S, Beidaghi M. Two-dimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries. ACS Nano 2017;11:11135-44.
76. Yu X, Wang B, Gong D, Xu Z, Lu B. Graphene nanoribbons on highly porous 3D graphene for high-capacity and ultrastable Al-ion batteries. Adv Mater 2017;29:1604118.
77. Shen F, Sun Z, Zhao L, et al. Triggering the phase transition and capacity enhancement of Nb2O5 for fast-charging lithium-ion storage. J Mater Chem A 2021;9:14534-44.
78. Liu F, Liu Y, Zhao X, Liu X, Fan LZ. Pursuit of a high-capacity and long-life Mg-storage cathode by tailoring sandwich-structured MXene@carbon nanosphere composites. J Mater Chem A 2019;7:16712-9.
79. Zhu J, Shi R, Liu Y, et al. 3D interwoven MXene networks fabricated by the assistance of bacterial celluloses as high-performance cathode material for rechargeable magnesium battery. Appl Surf Sci 2020;528:146985.
80. Zhang Y, Li D, Li J, et al. Flexible TiVCTx MXene film for high-performance magnesium-ion storage device. J Colloid Interface Sci 2024;657:550-8.
81. Zhao X, Zhang F, Li H, et al. Dynamic heterostructure design of MnO2 for high-performance aqueous zinc-ion batteries. Energy Environ Sci 2024;17:3629-40.
82. Song M, Tan H, Chao D, Fan HJ. Recent advances in Zn-ion batteries. Adv Funct Mater 2018;28:1802564.
83. Xie M, Zhang X, Wang R, et al. Mn-O bond engineering mitigating Jahn-Teller effects of manganese oxide for aqueous zinc-ion battery applications. Chem Eng J 2024;494:152908.
84. Zhao Y, Zhang P, Liang J, et al. Uncovering sulfur doping effect in MnO2 nanosheets as an efficient cathode for aqueous zinc ion battery. Energy Stor Mater 2022;47:424-33.
85. Zhu X, Cao Z, Wang W, et al. Superior-performance aqueous zinc-ion batteries based on the in situ growth of MnO2 nanosheets on V2CTX MXene. ACS Nano 2021;15:2971-83.
86. Peng Q, Guo J, Zhang Q, et al. Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J Am Chem Soc 2014;136:4113-6.
87. Wang Y, Liu L, Wang Y, Qu J, Chen Y, Song J. Atomically coupled 2D MnO2/MXene superlattices for ultrastable and fast aqueous zinc-ion batteries. ACS Nano 2023;17:21761-70.
88. Shi M, Wang B, Chen C, Lang J, Yan C, Yan X. 3D high-density MXene@MnO2 microflowers for advanced aqueous zinc-ion batteries. J Mater Chem A 2020;8:24635-44.
89. Wu L, Mei Y, Liu Y, et al. Interfacial synthesis of strongly-coupled δ-MnO2/MXene heteronanosheets for stable zinc ion batteries with Zn2+-exclusive storage mechanism. Chem Eng J 2023;459:141662.
90. Shi M, Wang B, Shen Y, et al. 3D assembly of MXene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries. Chem Eng J 2020;399:125627.
91. Du M, Miao Z, Li H, Sang Y, Liu H, Wang S. Strategies of structural and defect engineering for high-performance rechargeable aqueous zinc-ion batteries. J Mater Chem A 2021;9:19245-81.
92. Zhang F, Sun X, Du M, et al. Weaker interactions in Zn2+ and organic ion-pre-intercalated vanadium oxide toward highly reversible zinc-ion batteries. Energy Environ Mater 2021;4:620-30.
93. Du M, Liu C, Zhang F, et al. Tunable layered (Na,Mn)V8O20·nH2O cathode material for high-performance aqueous zinc ion batteries. Adv Sci 2020;7:2000083.
94. Dong W, Du M, Zhang F, et al. In situ electrochemical transformation reaction of ammonium-anchored heptavanadate cathode for long-life aqueous zinc-ion batteries. ACS Appl Mater Interfaces 2021;13:5034-43.
95. Zhang X, Xue F, Sun X, et al. High-capacity zinc vanadium oxides with long-term cyclability enabled by in-situ electrochemical oxidation as zinc-ion battery cathode. Chem Eng J 2022;445:136714.
96. Du M, Miao Z, Li H, et al. Oxygen-vacancy and phosphate coordination triggered strain engineering of vanadium oxide for high-performance aqueous zinc ion storage. Nano Energy 2021;89:106477.
97. Zhang F, Du M, Miao Z, et al. Oxygen vacancies and N-doping in organic-inorganic pre-intercalated vanadium oxide for high-performance aqueous zinc-ion batteries. InfoMat 2022;4:e12346.
98. Zhang F, Kang Y, Zhao X, et al. Boosting charge carrier transport by layer-stacked MnxV2O6/V2C heterostructures for wide-temperature zinc-ion batteries. Adv Funct Mater 2024:2402071.
99. Liu C, Xu W, Mei C, Li MC, Xu X, Wu Q. Highly stable H2V3O8/Mxene cathode for Zn-ion batteries with superior rate performance and long lifespan. Chem Eng J 2021;405:126737.
100. Liang P, Xu T, Zhu K, et al. Heterogeneous interface-boosted zinc storage of H2V3O8 nanowire/Ti3C2Tx MXene composite toward high-rate and long cycle lifespan aqueous zinc-ion batteries. Energy Stor Mater 2022;50:63-74.
101. Xiao B, Chen J, Hu C, et al. 2D dynamic heterogeneous interface coupling endowing extra Zn2+ storage. Adv Funct Mater 2023;33:2211679.
102. Liu H, Jiang L, Cao B, et al. Van der Waals interaction-driven self-assembly of V2O5 nanoplates and MXene for high-performing zinc-ion batteries by suppressing vanadium dissolution. ACS Nano 2022;16:14539-48.
103. Zheng J, Xu T, Xia G, Cui WG, Yang Y, Yu X. Water-stabilized vanadyl phosphate monohydrate ultrathin nanosheets toward high voltage Al-ion batteries. Small 2023;19:e2207619.
104. Hu P, Zhu T, Wang X, et al. Highly durable Na2V6O16·1.63H2O nanowire cathode for aqueous zinc-ion battery. Nano Lett 2018;18:1758-63.
105. Geng L, Lv G, Xing X, Guo J. Reversible electrochemical intercalation of aluminum in Mo6S8. Chem Mater 2015;27:4926-9.
106. Hu Y, Ye D, Luo B, et al. A binder-free and free-standing cobalt sulfide@carbon nanotube cathode material for aluminum-ion batteries. Adv Mater 2018;30:1703824.
107. Shuai H, Liu R, Li W, et al. Recent advances of transition metal sulfides/selenides cathodes for aqueous zinc-ion batteries. Adv Energy Mater 2023;13:2202992.
108. Xu M, Bai N, Li HX, Hu C, Qi J, Yan XB. Synthesis of MXene-supported layered MoS2 with enhanced electrochemical performance for Mg batteries. Chin Chem Lett 2018;29:1313-6.
109. Mao Y, Bai J, Lin S, et al. Two birds with one stone: V4C3 MXene synergistically promoted VS2 cathode and zinc anode for high-performance aqueous zinc-ion batteries. Small 2024;20:e2306615.
110. Zhang Y, Cao Z, Liu S, et al. Charge-enriched strategy based on MXene-based polypyrrole layers toward dendrite-free zinc metal anodes. Adv Energy Mater 2022;12:2103979.
111. Tian Y, An Y, Yang Y, Xu B. Robust nitrogen/selenium engineered MXene/ZnSe hierarchical multifunctional interfaces for dendrite-free zinc-metal batteries. Energy Stor Mater 2022;49:122-34.
112. Yao L, Ju S, Yu X. Rational surface engineering of MXene@N-doped hollow carbon dual-confined cobalt sulfides/selenides for advanced aluminum batteries. J Mater Chem A 2021;9:16878-88.
113. Ohno S, Zeier WG. Toward practical solid-state lithium-sulfur batteries: challenges and perspectives. ACC Mater Res 2021;2:869-80.
114. Sun R, Hu J, Shi X, et al. Water-soluble cross-linking functional binder for low-cost and high-performance lithium-sulfur batteries. Adv Funct Mater 2021;31:2104858.
115. Xiao Z, Li Z, Meng X, Wang R. MXene-engineered lithium-sulfur batteries. J Mater Chem A 2019;7:22730-43.
116. Kaland H, Håskjold Fagerli F, Hadler-Jacobsen J, et al. Performance study of MXene/carbon nanotube composites for current collector- and binder-free Mg-S batteries. ChemSusChem 2021;14:1864-73.
117. Xu H, Zhu D, Zhu W, et al. Rational design of high concentration electrolytes and MXene-based sulfur host materials toward high-performance magnesium sulfur batteries. Chem Eng J 2022;428:131031.
118. Cheng Z, Xu Y, Zhang X, et al. An interfacial covalent bonding coupled ultrafine CuS-nanocrystals/MXene heterostructure for efficient and durable magnesium storage. J Mater Chem A 2023;11:12176-84.
119. Zhu J, Zhang X, Gao H, et al. VS4 anchored on Ti3C2 MXene as a high-performance cathode material for magnesium ion battery. J Power Sources 2022;518:230731.
120. Xu N, Wu KH, Miao QS, Zhou XM, Sheng LZ. Application of metal selenide anode materials in sodium-ion batteries. J Changsha Univ Sci Technol 2024;21:1-11.
121. Narayanasamy M, Hu L, Kirubasankar B, Liu Z, Angaiah S, Yan C. Nanohybrid engineering of the vertically confined marigold structure of rGO-VSe2 as an advanced cathode material for aqueous zinc-ion battery. J Alloy Compd 2021;882:160704.
122. Lv W, Wu G, Li X, Li J, Li Z. Two-dimensional V2C@Se (MXene) composite cathode material for high-performance rechargeable aluminum batteries. Energy Stor Mater 2022;46:138-46.
123. Li Z, Wang X, Zhang W, Yang S. Two-dimensional Ti3C2@CTAB-Se (MXene) composite cathode material for high-performance rechargeable aluminum batteries. Chem Eng J 2020;398:125679.
124. Yuan Z, Lin Q, Li Y, Han W, Wang L. Effects of multiple ion reactions based on a CoSe2/MXene cathode in aluminum-ion batteries. Adv Mater 2023;35:e2211527.
125. Liu F, Wang T, Liu X, Jiang N, Fan LZ. High-performance heterojunction Ti3C2/CoSe2 with both intercalation and conversion storage mechanisms for magnesium batteries. Chem Eng J 2021;426:130747.
126. Zhang Y, Cao JM, Yuan Z, et al. TiVCTx MXene/chalcogenide heterostructure-based high-performance magnesium-ion battery as flexible integrated units. Small 2022;18:e2202313.
127. Zhang Y, Cao J, Li J, et al. Self-assembled cobalt-doped NiMn-layered double hydroxide (LDH)/V2CTx MXene hybrids for advanced aqueous electrochemical energy storage properties. Chem Eng J 2022;430:132992.
128. Pan H, Li B, Mei D, et al. Controlling solid-liquid conversion reactions for a highly reversible aqueous zinc-iodine battery. ACS Energy Lett 2017;2:2674-80.
129. Li X, Li N, Huang Z, et al. Enhanced redox kinetics and duration of aqueous I2/I- conversion chemistry by MXene confinement. Adv Mater 2021;33:e2006897.
130. Wang X, Liu Y, Wei Z, et al. MXene-boosted imine cathodes with extended conjugated structure for aqueous zinc-ion batteries. Adv Mater 2022;34:e2206812.
131. Tie Z, Liu L, Deng S, Zhao D, Niu Z. Proton insertion chemistry of a zinc-organic battery. Angew Chem Int Ed 2020;59:4920-4.
132. Na M, Oh Y, Byon HR. Effects of Zn2+ and H+ association with naphthalene diimide electrodes for aqueous Zn-ion batteries. Chem Mater 2020;32:6990-7.
133. Nam KW, Park SS, Dos Reis R, et al. Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries. Nat Commun 2019;10:4948.
134. Wang Y, Song J, Wong WY. 3D nanostructured conductive PANI/MXene hydrogels for durable aqueous Zn-ion batteries. J Mater Chem A 2024;12:943-9.
135. Wu G, Lv C, Lv W, Li X, Zhang W, Li Z. Anthraquinone derivatives supported by Ti3C2(MXene) as cathode materials for aluminum-organic batteries. J Energy Chem 2022;74:174-83.