REFERENCES
1. Zhou, P.; Navid, I. A.; Ma, Y.; et al. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 2023, 613, 66-70.
2. Kim, J. H.; Kim, J.; Ma, J.; et al. Spontaneous metal-chelation strategy for highly dense Ni single-atom catalysts with asymmetric coordination in CO2 electroreduction. Small 2025, 21, 2409481.
3. Ma, J.; Ahn, S. H.; Kim, S. Y. Integration of earth-abundant cocatalysts for high-performance photoelectrochemical energy conversion. J. Energy. Chem. 2024, 88, 336-55.
4. Ma, J.; Cho, J. H.; Lee, C.; et al. Unraveling the harmonious coexistence of ruthenium states on a self-standing electrode for enhanced hydrogen evolution reaction. Energy. Environ. Mater. 2024, 7, e12766.
5. Cho, J. H.; Ma, J.; Lee, C.; et al. Crystallographically vacancy-induced MOF nanosheet as rational single-atom support for accelerating CO2 electroreduction to CO. Carbon. Energy. 2024, 6, e510.
6. Lee, J. K.; Seo, J. H.; Lim, J.; Park, S.; Jang, H. W. Best practices in membrane electrode assembly for water electrolysis. ACS. Mater. Lett. 2024, 6, 2757-86.
7. Kim, J. H.; Kang, E. S.; Kim, J. H. Effect of sulfur contents in NiZnS composite photocatalysts on solar water splitting. Korean. J. Met. Mater. 2023, 61, 284-90.
8. So, S. H.; Sung, S. J.; Yang, S. J.; Park, C. R. Where to go for the development of high-performance H2 storage materials at ambient conditions? Electron. Mater. Lett. 2023, 19, 1-18.
9. Han, S.; Dhungel, S. K.; Park, S.; et al. Integration of subcells in III-V//Si tandem solar cells. Trans. Electr. Electron. Mater. 2023, 24, 132-9.
10. Jang, W. J.; Jang, H. W.; Kim, S. Y. Recent advances in wide bandgap perovskite solar cells: focus on lead-free materials for tandem structures. Small. Methods. 2024, 8, 2300207.
11. Cho, J. H.; Ma, J.; Kim, S. Y. Toward high-efficiency photovoltaics-assisted electrochemical and photoelectrochemical CO2 reduction: strategy and challenge. Exploration 2023, 3, 20230001.
12. Massiot, I.; Cattoni, A.; Collin, S. Progress and prospects for ultrathin solar cells. Nat. Energy. 2020, 5, 959-72.
13. Jang, W. J.; Kim, E. H.; Cho, J. H.; Lee, D.; Kim, S. Y. Elucidating the role of alkali metal carbonates in impact on oxygen vacancies for efficient and stable perovskite solar cells. Adv. Sci. 2024, 11, 2406657.
14. Peng, X.; Liu, Z.; Jiang, D. A review of multiphase energy conversion in wind power generation. Renew. Sustain. Energy. Rev. 2021, 147, 111172.
15. Pryor, S. C.; Barthelmie, R. J.; Bukovsky, M. S.; Leung, L. R.; Sakaguchi, K. Climate change impacts on wind power generation. Nat. Rev. Earth. Environ. 2020, 1, 627-43.
16. He, W.; Shan, C.; Fu, S.; et al. Large harvested energy by self-excited liquid suspension triboelectric nanogenerator with optimized charge transportation behavior. Adv. Mater. 2023, 35, 2209657.
17. Stefenon, S. F.; Ribeiro, M. H. D. M.; Nied, A.; et al. Time series forecasting using ensemble learning methods for emergency prevention in hydroelectric power plants with dam. Electric. Power. Syst. Res. 2022, 202, 107584.
18. Bertasini, D.; Battista, F.; Rizzioli, F.; Frison, N.; Bolzonella, D. Decarbonization of the European natural gas grid using hydrogen and methane biologically produced from organic waste: a critical overview. Renew. Energy. 2023, 206, 386-96.
20. Tong, D.; Farnham, D. J.; Duan, L.; et al. Geophysical constraints on the reliability of solar and wind power worldwide. Nat. Commun. 2021, 12, 6146.
21. Jun, S. E.; Lee, J. K.; Jang, H. W. Two-dimensional materials for photoelectrochemical water splitting. Energy. Adv. 2023, 2, 34-53.
22. Fan, L.; Tu, Z.; Chan, S. H. Recent development of hydrogen and fuel cell technologies: a review. Energy. Rep. 2021, 7, 8421-46.
23. Jun S, Choi S, Kim J, Kwon KC, Park SH, Jang HW. Non-noble metal single atom catalysts for electrochemical energy conversion reactions. Chin. J. Catal. 2023, 50, 195-214.
24. Krevor, S.; de, C. H.; Gasda, S. E.; et al. Subsurface carbon dioxide and hydrogen storage for a sustainable energy future. Nat. Rev. Earth. Environ. 2023, 4, 102-18.
25. Shang, Y.; Chen, S.; Chen, N.; et al. A universal strategy for high-voltage aqueous batteries via lone pair electrons as the hydrogen bond-breaker. Energy. Environ. Sci. 2022, 15, 2653-63.
26. Allendorf, M. D.; Stavila, V.; Snider, J. L.; et al. Challenges to developing materials for the transport and storage of hydrogen. Nat. Chem. 2022, 14, 1214-23.
27. Jun, S. E.; Kim, Y. H.; Kim, J.; et al. Atomically dispersed iridium catalysts on silicon photoanode for efficient photoelectrochemical water splitting. Nat. Commun. 2023, 14, 609.
28. Guo, J.; Zheng, Y.; Hu, Z.; et al. Direct seawater electrolysis by adjusting the local reaction environment of a catalyst. Nat. Energy. 2023, 8, 264-72.
29. Xie, H.; Zhao, Z.; Liu, T.; et al. A membrane-based seawater electrolyser for hydrogen generation. Nature 2022, 612, 673-8.
30. Teitsworth, T. S.; Hill, D. J.; Litvin, S. R.; et al. Water splitting with silicon p-i-n superlattices suspended in solution. Nature 2023, 614, 270-4.
31. Wan, Y.; Zhou, L.; Lv, R. Rational design of efficient electrocatalysts for hydrogen production by water electrolysis at high current density. Mater. Chem. Front. 2023, 7, 6035-60.
32. Zang, Y.; Lu, D. Q.; Wang, K.; et al. A pyrolysis-free Ni/Fe bimetallic electrocatalyst for overall water splitting. Nat. Commun. 2023, 14, 1792.
33. Wu, R.; Xu, J.; Zhao, C. L.; et al. Dopant triggered atomic configuration activates water splitting to hydrogen. Nat. Commun. 2023, 14, 2306.
34. Lin, G.; Zhang, Z.; Ju, Q.; et al. Bottom-up evolution of perovskite clusters into high-activity rhodium nanoparticles toward alkaline hydrogen evolution. Nat. Commun. 2023, 14, 280.
35. Wang, S.; Lu, A.; Zhong, C. J. Hydrogen production from water electrolysis: role of catalysts. Nano. Converg. 2021, 8, 4.
36. Yang, J.; Jang, M. J.; Zeng, X.; et al. Non-precious electrocatalysts for oxygen evolution reaction in anion exchange membrane water electrolysis: a mini review. Electrochem. Commun. 2021, 131, 107118.
37. Bulakhe, S.; Shinde, N.; Kim, J.; Mane, R. S.; Deokate, R. Recent advances in non-precious Ni-based promising catalysts for water splitting application. Int. J. Energy. Res. 2022, 46, 17829-47.
38. Wan, L.; Xu, Z.; Xu, Q.; et al. Key components and design strategy of the membrane electrode assembly for alkaline water electrolysis. Energy. Environ. Sci. 2023, 16, 1384-430.
39. Vincent, I.; Bessarabov, D. Low cost hydrogen production by anion exchange membrane electrolysis: a review. Renew. Sustain. Energy. Rev. 2018, 81, 1690-704.
40. Hu, X.; Yin, Y.; Liu, W.; Zhang, X.; Zhang, H. Cobalt phosphide nanocage@ferric-zinc mixed-metal phosphide nanotube hierarchical nanocomposites for enhanced overall water splitting. Chin. J. Catal. 2019, 40, 1085-92.
41. Miller, H. A.; Bouzek, K.; Hnat, J.; et al. Green hydrogen from anion exchange membrane water electrolysis: a review of recent developments in critical materials and operating conditions. Sustain. Energy. Fuels. 2020, 4, 2114-33.
42. Abbasi, R.; Setzler, B. P.; Lin, S.; et al. A roadmap to low-cost hydrogen with hydroxide exchange membrane electrolyzers. Adv. Mater. 2019, 31, 1805876.
43. Li, C.; Baek, J. The promise of hydrogen production from alkaline anion exchange membrane electrolyzers. Nano. Energy. 2021, 87, 106162.
44. Du, N.; Roy, C.; Peach, R.; Turnbull, M.; Thiele, S.; Bock, C. Anion-exchange membrane water electrolyzers. Chem. Rev. 2022, 122, 11830-95.
45. Li, Q.; Molina, V. A.; Peltier, C. R.; et al. Anion exchange membrane water electrolysis: the future of green hydrogen. J. Phys. Chem. C. 2023, 127, 7901-12.
46. Santoro, C.; Lavacchi, A.; Mustarelli, P.; et al. What is next in anion-exchange membrane water electrolyzers? ChemSusChem 2022, 15, e202200027.
47. Sulaiman RR, Wong WY, Loh KS. Recent developments on transition metal-based electrocatalysts for application in anion exchange membrane water electrolysis. Int. J. Energy. Res. 2022, 46, 2241-76.
48. Gohil, J. M.; Dutta, K. Structures and properties of polymers in ion exchange membranes for hydrogen generation by water electrolysis. Polym. Adv. Technol. 2021, 32, 4598-615.
49. Varcoe, J. R.; Atanassov, P.; Dekel, D. R.; et al. Anion-exchange membranes in electrochemical energy systems. Energy. Environ. Sci. 2014, 7, 3135-91.
50. Feng, H.; He, X.; Su, Q.; Li, M. Poly (aryl quinuclidinium) anion exchange membrane water electrolysis based on the mature industry chain of alkaline water electrolysis. Int. J. Hydrogen. Energy. 2025, 98, 915-22.
51. Li, X.; Han, B.; Cao, S.; Bai, H.; Li, J.; Du, X. In-situ reconstitution of Ni(III)-based active sites from vanadium doped nickel phosphide/metaphosphate for super-stable urea-assisted water electrolysis at large current densities. J. Colloid. Interface. Sci. 2025, 680, 665-75.
52. Janani, G.; Surendran, S.; Lee, D.; et al. Aggregation induced edge sites actuation of 3D MoSe2/rGO electrocatalyst for high-performing water splitting system. Aggregate 2024, 5, e430.
53. Janani, G.; Surendran, S.; Moon, D. J.; et al. Ambipolar nature accelerates dual-functionality on Ni/Ni3N@NC for simultaneous hydrogen and oxygen evolution in electrochemical water splitting system. Adv. Sustain. Syst. 2024, 8, 2400059.
54. Chen, P.; Hu, X. High-efficiency anion exchange membrane water electrolysis employing non-noble metal catalysts. Advd. Energy. Mater. 2020, 10, 2002285.
55. Chen, J.; Aliasgar, M.; Zamudio, F. B.; et al. Diversity of platinum-sites at platinum/fullerene interface accelerates alkaline hydrogen evolution. Nat. Commun. 2023, 14, 1711.
56. Liao, F.; Yin, K.; Ji, Y.; et al. Iridium oxide nanoribbons with metastable monoclinic phase for highly efficient electrocatalytic oxygen evolution. Nat. Commun. 2023, 14, 1248.
57. Shah, A. H.; Zhang, Z.; Huang, Z.; et al. The role of alkali metal cations and platinum-surface hydroxyl in the alkaline hydrogen evolution reaction. Nat. Catal. 2022, 5, 923-33.
58. Du, J.; Chen, D.; Ding, Y.; Wang, L.; Li, F.; Sun, L. Highly stable and efficient oxygen evolution electrocatalyst based on Co oxides decorated with ultrafine Ru nanoclusters. Small 2023, 19, 2207611.
59. Ghorui, U. K.; Sivaguru, G.; Teja, U. B.; et al. Anion-exchange membrane water electrolyzers for green hydrogen generation: advancement and challenges for industrial application. ACS. Appl. Energy. Mater. 2024, 7, 7649-76.
60. Sheng, W.; Zhou, X.; Wu, L.; et al. Quaternized poly(2,6-dimethyl-1,4-phenylene oxide) anion exchange membranes with pendant sterically-protected imidazoliums for alkaline fuel cells. J. Membr. Sci. 2020, 601, 117881.
61. Felgenhauer, M.; Hamacher, T. State-of-the-art of commercial electrolyzers and on-site hydrogen generation for logistic vehicles in South Carolina. Int. J. Hydrogen. Energy. 2015, 40, 2084-90.
62. Jang, M. J.; Yang, S. H.; Park, M. G.; et al. Efficient and durable anion exchange membrane water electrolysis for a commercially available electrolyzer stack using alkaline electrolyte. ACS. Energy. Lett. 2022, 7, 2576-83.
63. Gao, B.; Zhao, Y.; Du, X.; et al. Modulating trinary-heterostructure of MoS2 via controllably carbon doping for enhanced electrocatalytic hydrogen evolution reaction. Adv. Funct. Mater. 2023, 33, 2214085.
64. Park, Y. S.; Yang, J.; Lee, J.; et al. Superior performance of anion exchange membrane water electrolyzer: ensemble of producing oxygen vacancies and controlling mass transfer resistance. Appl. Catal. B. Environ. 2020, 278, 119276.
65. Zhang, J.; Wu, Q.; Song, J.; Xu, C.; Chen, S.; Guo, Y. 3D transition metal boride monolithic electrode for industrial hectoampere-level current anion exchange membrane water electrolysis. Nano. Energy. 2024, 128, 109923.
66. Wan, L.; Pang, M.; Le, J.; et al. Oriented intergrowth of the catalyst layer in membrane electrode assembly for alkaline water electrolysis. Nat. Commun. 2022, 13, 7956.
67. Chang, J.; Wang, G.; Yang, Z.; et al. Dual-doping and synergism toward high-performance seawater electrolysis. Adv. Mater. 2021, 33, 2101425.
68. Chang, J.; Xiao, Y.; Xiao, M.; Ge, J.; Liu, C.; Xing, W. Surface oxidized cobalt-phosphide nanorods as an advanced oxygen evolution catalyst in alkaline solution. ACS. Catal. 2015, 5, 6874-8.
69. Chen, D.; Park, Y. S.; Liu, F.; Fang, L.; Duan, C. Hybrid perovskites as oxygen evolution electrocatalysts for high-performance anion exchange membrane water electrolyzers. Chem. Eng. J. 2023, 452, 139105.
70. Yoon, K.; Lee, K.; Jeong, J.; et al. Improved oxygen evolution reaction kinetics with titanium incorporated nickel ferrite for efficient anion exchange membrane electrolysis. ACS. Catal. 2024, 14, 4453-62.
71. Zhai, P.; Wang, C.; Zhao, Y.; et al. Regulating electronic states of nitride/hydroxide to accelerate kinetics for oxygen evolution at large current density. Nat. Commun. 2023, 14, 1873.
72. Lakshmi, K. S.; Vedhanarayanan, B.; Lin, T. Electrocatalytic hydrogen and oxygen evolution reactions: role of two-dimensional layered materials and their composites. Electrochim. Acta. 2023, 447, 142119.
73. Liu, Y.; Wang, Q.; Zhang, J.; et al. Recent advances in carbon-supported noble-metal electrocatalysts for hydrogen evolution reaction: syntheses, structures, and properties. Adv. Energy. Mater. 2022, 12, 2200928.
74. Yin, Z.; Liu, X.; Chen, S.; Ma, T.; Li, Y. Interface engineering and anion engineering of Mo-based heterogeneous electrocatalysts for hydrogen evolution reaction. Energy. Environ. Mater. 2023, 6, e12310.
75. Anantharaj, S.; Noda, S.; Jothi, V. R.; Yi, S.; Driess, M.; Menezes, P. W. Strategies and perspectives to catch the missing pieces in energy-efficient hydrogen evolution reaction in alkaline media. Angew. Chem. Int. Ed. 2021, 60, 18981-9006.
76. Gao, L.; Cui, X.; Sewell, C. D.; Li, J.; Lin, Z. Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chem. Soc. Rev. 2021, 50, 8428-69.
77. Wang, X.; Zhong, H.; Xi, S.; Lee, W. S. V.; Xue, J. Understanding of oxygen redox in the oxygen evolution reaction. Adv. Mater. 2022, 34, 2107956.
78. Shaik, S.; Kundu, J.; Yuan, Y.; et al. Recent progress and perspective in pure water-fed anion exchange membrane water electrolyzers. Advanced. Energy. Materials. 2024, 14, 2401956.
79. Brüesch, P.; Christen, T. The electric double layer at a metal electrode in pure water. J. Appl. Phys. 2004, 95, 2846-56.
80. Li, D.; Motz, A. R.; Bae, C.; et al. Durability of anion exchange membrane water electrolyzers. Energy. Environ. Sci. 2021, 14, 3393-419.
81. Li, D.; Park, E. J.; Zhu, W.; et al. Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers. Nat. Energy. 2020, 5, 378-85.
82. Xu, D.; Stevens, M. B.; Cosby, M. R.; et al. Earth-abundant oxygen electrocatalysts for alkaline anion-exchange-membrane water electrolysis: effects of catalyst conductivity and comparison with performance in three-electrode cells. ACS. Catal. 2019, 9, 7-15.
83. Xu, Q.; Zhang, L.; Zhang, J.; et al. Anion exchange membrane water electrolyzer: electrode design, lab-scaled testing system and performance evaluation. EnergyChem 2022, 4, 100087.
84. Lindquist, G. A.; Oener, S. Z.; Krivina, R.; et al. Performance and durability of pure-water-fed anion exchange membrane electrolyzers using baseline materials and operation. ACS. Appl. Mater. Interfaces. 2021, 13, 51917-24.
85. Lei, C.; Yang, K.; Wang, G.; et al. Impact of catalyst reconstruction on the durability of anion exchange membrane water electrolysis. ACS. Sustain. Chem. Eng. 2022, 10, 16725-33.
86. Gao, F.; Yu, P.; Gao, M. Seawater electrolysis technologies for green hydrogen production: challenges and opportunities. Curr. Opin. Chem. Eng. 2022, 36, 100827.
87. Wang, Y.; Wang, M.; Yang, Y.; et al. Potential technology for seawater electrolysis: Anion-exchange membrane water electrolysis. Chem. Catal. 2023, 3, 100643.
88. Burton, N.; Padilla, R.; Rose, A.; Habibullah, H. Increasing the efficiency of hydrogen production from solar powered water electrolysis. Renew. Sustain. Energy. Rev. 2021, 135, 110255.
89. Schrotenboer, A. H.; Veenstra, A. A.; uit, B. M. A.; Ursavas, E. A green hydrogen energy system: optimal control strategies for integrated hydrogen storage and power generation with wind energy. Renew. Sustain. Energy. Rev. 2022, 168, 112744.
90. Hu, H.; Zhang, Z.; Liu, L.; et al. Efficient and durable seawater electrolysis with a V2O3-protected catalyst. Sci. Adv. 2024, 10, eadn7012.
91. Khan, M. A.; Al-attas, T.; Roy, S.; et al. Seawater electrolysis for hydrogen production: a solution looking for a problem? Energy. Environ. Sci. 2021, 14, 4831-9.
92. Kim, H. W.; Yun, T.; Hong, S.; Lee, S.; Jeong, S. Retardation of wetting for membrane distillation by adjusting major components of seawater. Water. Res. 2020, 175, 115677.
93. Song, J.; Qian, Z.; Yang, J.; Lin, X.; Xu, Q.; Li, J. In situ/operando investigation for heterogeneous electro-catalysts: from model catalysts to state-of-the-art catalysts. ACS. Energy. Lett. 2024, 9, 4414-40.
94. Wang, M.; Liu, S.; Ji, H.; Yang, T.; Qian, T.; Yan, C. Salting-out effect promoting highly efficient ambient ammonia synthesis. Nat. Commun. 2021, 12, 3198.
95. Szentirmai, V.; Wacha, A.; Németh, C.; et al. Reagent-free total protein quantification of intact extracellular vesicles by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Anal. Bioanal. Chem. 2020, 412, 4619-28.
96. Rupprechter, G. Operando surface spectroscopy and microscopy during catalytic reactions: from clusters via nanoparticles to meso-scale aggregates. Small 2021, 17, 2004289.
97. Lai, W.; Ma, Z.; Zhang, J.; Yuan, Y.; Qiao, Y.; Huang, H. Dynamic evolution of active sites in electrocatalytic CO2 reduction reaction: fundamental understanding and recent progress. Adv. Funct. Mater. 2022, 32, 2111193.
98. López-Lorente, Á. I. Recent developments on gold nanostructures for surface enhanced Raman spectroscopy: particle shape, substrates and analytical applications. a review. Anal. Chim. Acta. 2021, 1168, 338474.
99. Lee, W. H.; Han, M. H.; Ko, Y. J.; Min, B. K.; Chae, K. H.; Oh, H. S. Electrode reconstruction strategy for oxygen evolution reaction: maintaining Fe-CoOOH phase with intermediate-spin state during electrolysis. Nat. Commun. 2022, 13, 605.
100. Jiang, J.; Sun, F.; Zhou, S.; et al. Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide. Nat. Commun. 2018, 9, 2885.
101. Chen, S.; Li, W.; Jiang, W.; et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem. 2022, 134, e202114450.
102. Geng, S.; Zheng, Y.; Li, S.; et al. Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst. Nat. Energy. 2021, 6, 904-12.
103. Zhang, Y.; Ze, H.; Fang, P.; et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nat. Rev. Methods. Primers. 2023, 3, 36.
104. Chen, J.; Liu, G.; Zhu, Y. Z.; et al. Ag@MoS2 core-shell heterostructure as SERS platform to reveal the hydrogen evolution active sites of single-layer MoS2. J. Am. Chem. Soc. 2020, 142, 7161-7.
105. Radjenovic, P. M.; Zhou, R.; Dong, J.; Li, J. Watching reactions at solid-liquid interfaces with in situ raman spectroscopy. J. Phys. Chem. C. 2021, 125, 26285-95.
106. Yoo, R. M. S.; Yesudoss, D.; Johnson, D.; Djire, A. A review on the application of in-situ Raman spectroelectrochemistry to understand the mechanisms of hydrogen evolution reaction. ACS. Catal. 2023, 13, 10570-601.
107. Holder, C. F.; Schaak, R. E. Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS. Nano. 2019, 13, 7359-65.
108. Magnussen, O. M.; Drnec, J.; Qiu, C.; et al. In situ and operando X-ray scattering methods in electrochemistry and electrocatalysis. Chem. Rev. 2024, 124, 629-721.
109. Yang, Y.; Xiong, Y.; Zeng, R.; et al. Operando methods in electrocatalysis. ACS. Catal. 2021, 11, 1136-78.
110. Arul, K. T.; Chang, H.; Shiu, H.; Dong, C.; Pong, W. A review of energy materials studied by in situ/operando synchrotron x-ray spectro-microscopy. J. Phys. D:. Appl. Phys. 2021, 54, 343001.
111. Chen, X.; Lv, S.; Gu, H.; et al. Amorphous bismuth-tin oxide nanosheets with optimized C-N coupling for efficient urea synthesis. J. Am. Chem. Soc. 2024, 146, 13527-35.
112. Xu, W.; Zeng, R.; Rebarchik, M.; et al. Atomically dispersed Zn/Co-N-C as ORR electrocatalysts for alkaline fuel cells. J. Am. Chem. Soc. 2024, 146, 2593-603.
113. Xiao, M.; Zhu, J.; Ma, L.; et al. Microporous framework induced synthesis of single-atom dispersed Fe-N-C acidic ORR catalyst and its in situ reduced Fe-N4 active site identification revealed by X-ray absorption spectroscopy. ACS. Catal. 2018, 8, 2824-32.
114. Li, X.; Cao, C.; Hung, S.; et al. Identification of the electronic and structural dynamics of catalytic centers in single-Fe-atom material. Chem 2020, 6, 3440-54.
115. Ampurdanés, J.; Chourashiya, M.; Urakawa, A. Cobalt oxide-based materials as non-PGM catalyst for HER in PEM electrolysis and in situ XAS characterization of its functional state. Catal. Today. 2019, 336, 161-8.
116. Du, Y.; Zhu, Y.; Xi, S.; et al. XAFCA: a new XAFS beamline for catalysis research. J. Synchrotron. Radiat. 2015, 22, 839-43.
117. Peng, C. K.; Lin, Y. C.; Chiang, C. L.; et al. Zhang-Rice singlets state formed by two-step oxidation for triggering water oxidation under operando conditions. Nat. Commun. 2023, 14, 529.
118. Hong, Y.; Cho, S. C.; Kim, S.; et al. Double-walled tubular heusler-type platinum-ruthenium phosphide as all-pH hydrogen evolution reaction catalyst outperforming platinum and ruthenium. Adv. Energy. Mater. 2024, 14, 2304269.
119. Lei, H.; Wan, Q.; Tan, S.; Wang, Z.; Mai, W. Pt-quantum-dot-modified sulfur-doped NiFe layered double hydroxide for high-current-density alkaline water splitting at industrial temperature. Adv. Mater. 2023, 35, 2208209.
120. Wang, K.; Cao, J.; Yang, X.; et al. Kinetically accelerating elementary steps via bridged Ru-H state for the hydrogen-evolution in anion-exchange membrane electrolyzer. Adv. Funct. Mater. 2023, 33, 2212321.
121. Lin, X.; Hu, W.; Xu, J.; et al. Alleviating OH blockage on the catalyst surface by the puncture effect of single-atom sites to boost alkaline water electrolysis. J. Am. Chem. Soc. 2024, 146, 4883-91.
122. Yao, R.; Sun, K.; Zhang, K.; et al. Stable hydrogen evolution reaction at high current densities via designing the Ni single atoms and Ru nanoparticles linked by carbon bridges. Nat. Commun. 2024, 15, 2218.
123. Li, Q.; Fu, X.; Li, H.; et al. Strong d-p orbital hybridization of Os-P via ultrafast microwave plasma assistance for anion exchange membrane electrolysis. Adv. Funct. Materials. 2024, 34, 2408517.
124. Li, D.; Cheng, H.; Hao, X.; et al. Wood-derived freestanding carbon-based electrode with hierarchical structure for industrial-level hydrogen production. Adv. Mater. 2024, 36, 2304917.
125. Lee, W.; Yun, H.; Kim, Y.; et al. Effect of activating a nickel-molybdenum catalyst in an anion exchange membrane water electrolyzer. ACS. Catal. 2023, 13, 11589-97.
126. Chen, Y.; Yue, K.; Zhao, J.; Cai, Z.; Wang, X.; Yan, Y. Effective modulating of the Mo dissolution and polymerization in Ni4Mo/NiMoO4 heterostructure via metal-metal oxide-support interaction for boosting H2 production. Chem. Eng. J. 2023, 466, 143097.
127. Zhao, T.; Wang, S.; Jia, C.; et al. Cooperative boron and vanadium doping of nickel phosphides for hydrogen evolution in alkaline and anion exchange membrane water/seawater electrolyzers. Small 2023, 19, 2208076.
128. Zhang, H.; Chen, A.; Bi, Z.; et al. MOF-on-MOF-derived ultrafine Fe2P-Co2P heterostructures for high-efficiency and durable anion exchange membrane water electrolyzers. ACS. Nano. 2023, 17, 24070-9.
129. Xie, L.; Wang, L.; Liu, X.; et al. Flexible tungsten disulfide superstructure engineering for efficient alkaline hydrogen evolution in anion exchange membrane water electrolysers. Nat. Commun. 2024, 15, 5702.
130. Kang, X.; Yang, F.; Zhang, Z.; et al. A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer. Nat. Commun. 2023, 14, 3607.
131. Wang, N.; Ou, P.; Hung, S. F.; et al. Strong-proton-adsorption co-based electrocatalysts achieve active and stable neutral seawater splitting. Adv. Mater. 2023, 35, 2210057.
132. Park, J. E.; Park, S.; Kim, M.; et al. Three-dimensional unified electrode design using a NiFeOOH catalyst for superior performance and durable anion-exchange membrane water electrolyzers. ACS. Catal. 2022, 12, 135-45.
133. Thangavel, P.; Lee, H.; Kong, T.; et al. Immobilizing low-cost metal nitrides in electrochemically reconstructed platinum group metal (PGM)-free oxy-(hydroxides) surface for exceptional OER kinetics in anion exchange membrane water electrolysis. Adv. Energy. Mater. 2023, 13, 2203401.
134. Yang, X.; Liang, J.; Shi, Q.; et al. Regulating the third metal to design and engineer multilayered NiFeM (M: Co, Mn, and Cu) nanofoam anode catalysts for anion-exchange membrane water electrolyzers. Adv. Energy. Mater. 2024, 14, 2400029.
135. Zhao, Y.; Wen, Q.; Huang, D.; et al. Operando reconstruction toward dual-cation-defects Co-containing NiFe oxyhydroxide for ultralow energy consumption industrial water splitting electrolyzer. Adv. Energy. Mater. 2023, 13, 2203595.
136. Park, Y. S.; Jang, M. J.; Jeong, J.; et al. Hierarchical chestnut-burr like structure of copper cobalt oxide electrocatalyst directly grown on Ni foam for anion exchange membrane water electrolysis. ACS. Sustain. Chem. Eng. 2020, 8, 2344-9.
137. Park, Y. S.; Liu, F.; Diercks, D.; Braaten, D.; Liu, B.; Duan, C. High-performance anion exchange membrane water electrolyzer enabled by highly active oxygen evolution reaction electrocatalysts: synergistic effect of doping and heterostructure. Appl. Catal. B. Environ. 2022, 318, 121824.
138. Park, Y. S.; Chae, A.; Choi, G. H.; et al. Unveiling the role of catalytically active MXene supports in enhancing the performance and durability of cobalt oxygen evolution reaction catalysts for anion exchange membrane water electrolyzers. Appl. Catal. B. Environ. Energy. 2024, 346, 123731.
139. Park, S.; Jun, J. H.; Park, M.; et al. Hierarchically designed Co4Fe3@N-doped graphitic carbon as an electrocatalyst for oxygen evolution in anion-exchange-membrane water electrolysis. Energy. Fuels. 2024, 38, 4451-63.
140. Aralekallu, S.; Sannegowda, L. K.; Singh, V. Advanced bifunctional catalysts for energy production by electrolysis of earth-abundant water. Fuel 2024, 357, 129753.
141. Tran, K. D.; Nguyen, T. H.; Tran, D. T.; Dinh, V. A.; Kim, N. H.; Lee, J. H. Realizing the tailored catalytic performances on atomic Pt-promoted transition metal moieties implanted layered double hydroxides for water electrolysis. ACS. Nano. 2024, 18, 16222-35.
142. Shen, L.; Wang, Y.; Shen, L.; et al. Ruthenium nanoparticles decorated with surface hydroxyl and borate species boost overall seawater splitting via increased hydrophilicity. Energy. Environ. Sci. 2024, 17, 3888-97.
143. Chang, J.; Wang, G.; Belharsa, A.; Ge, J.; Xing, W.; Yang, Y. Stable Fe2P2S6 nanocrystal catalyst for high-efficiency water electrolysis. Small. Methods. 2020, 4, 1900632.
144. Liang, Z.; Shen, D.; Wei, Y.; et al. Modulating the electronic structure of cobalt-vanadium bimetal catalysts for high-stable anion exchange membrane water electrolyzer. Adv. Mater. 2024, 36, 2408634.