REFERENCES
2. Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 2013, 135, 1167-76.
3. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-67.
4. Aravindan, V.; Gnanaraj, J.; Madhavi, S.; Liu, H. K. Lithium-ion conducting electrolyte salts for lithium batteries. Chem. Eur. J. 2011, 17, 14326-46.
5. Li, M.; Wang, C.; Chen, Z.; Xu, K.; Lu, J. New concepts in electrolytes. Chem. Rev. 2020, 120, 6783-819.
6. Qian, J.; Henderson, W. A.; Xu, W.; et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 2015, 6, 6362.
7. Chang, Z.; Qiao, Y.; Deng, H.; Yang, H.; He, P.; Zhou, H. A stable high-voltage lithium-ion battery realized by an in-built water scavenger. Energy. Environ. Sci. 2020, 13, 1197-204.
8. Jiao, S.; Ren, X.; Cao, R.; et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy. 2018, 3, 739-46.
9. Zheng, J.; Engelhard, M. H.; Mei, D.; et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy. 2017, 2, 17012.
10. Chang, Z.; Qiao, Y.; Yang, H.; et al. Beyond the concentrated electrolyte: further depleting solvent molecules within a Li+ solvation sheath to stabilize high-energy-density lithium metal batteries. Energy. Environ. Sci. 2020, 13, 4122-31.
11. Lu, Y.; Tu, Z.; Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 2014, 13, 961-9.
12. Wang, Z.; Tan, R.; Wang, H.; et al. A metal-organic-framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery. Adv. Mater. 2018, 30, 1704436.
13. Chang, Z.; Yang, H.; Zhu, X.; He, P.; Zhou, H. A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments. Nat. Commun. 2022, 13, 1510.
14. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.
15. Kitagawa, S.; Kitaura, R.; Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 2004, 43, 2334-75.
16. Cui, Y.; Li, B.; He, H.; Zhou, W.; Chen, B.; Qian, G. Metal-organic frameworks as platforms for functional materials. Acc. Chem. Res. 2016, 49, 483-93.
17. Wang, L.; Han, Y.; Feng, X.; Zhou, J.; Qi, P.; Wang, B. Metal-organic frameworks for energy storage: batteries and supercapacitors. Coord. Chem. Rev. 2016, 307, 361-81.
18. Yaghi, O. M.; Li, G.; Li, H. Selective binding and removal of guests in a microporous metal-organic framework. Nature 1995, 378, 703-6.
19. Vaitsis, C.; Sourkouni, G.; Argirusis, C. Metal organic frameworks (MOFs) and ultrasound: a review. Ultrason. Sonochem. 2019, 52, 106-19.
20. Lee, J.; Choi, I.; Kim, E.; Park, J.; Nam, K. W. Metal-organic frameworks for high-performance cathodes in batteries. iScience 2024, 27, 110211.
21. Zheng, Y.; Zheng, S.; Xue, H.; Pang, H. Metal-organic frameworks for lithium-sulfur batteries. J. Mater. Chem. A. 2019, 7, 3469-91.
22. Chu, Z.; Gao, X.; Wang, C.; Wang, T.; Wang, G. Metal-organic frameworks as separators and electrolytes for lithium-sulfur batteries. J. Mater. Chem. A. 2021, 9, 7301-16.
23. Chae, S.; Ko, M.; Kim, K.; Ahn, K.; Cho, J. Confronting issues of the practical implementation of Si anode in high-energy lithium-ion batteries. Joule 2017, 1, 47-60.
24. Zhou, Y.; Long, J.; Li, Y. Ni-based catalysts derived from a metal-organic framework for selective oxidation of alkanes. Chin. J. Catal. 2016, 37, 955-62.
25. Eddaoudi, M.; Moler, D. B.; Li, H.; et al. Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res. 2001, 34, 319-30.
26. Sun, L.; Campbell, M. G.; Dincă, M. Electrically conductive porous metal-organic frameworks. Angew. Chem. Int. Ed. 2016, 55, 3566-79.
27. Xie, Z.; Cao, B.; Yue, X.; et al. Metal organic frameworks-based cathode materials for advanced Li-S batteries: a comprehensive review. Nano. Res. 2024, 17, 2592-618.
28. Ren, J.; Huang, Y.; Zhu, H.; et al. Recent progress on MOF-derived carbon materials for energy storage. Carbon. Energy. 2020, 2, 176-202.
29. Babkova, T.; Kiefer, R.; Le, Q. B. Hybrid electrolyte based on PEO and ionic liquid with in situ produced and dispersed silica for sustainable solid-state battery. Sustainability 2024, 16, 1683.
30. Yang, S.; Zhang, Z.; Lin, J.; et al. Recent progress in quasi/all-solid-state electrolytes for lithium-sulfur batteries. Front. Energy. Res. 2022, 10, 945003.
31. Reinoso, D. M.; de, T. G. C.; Fernández-Ropero, A. J.; Levenfeld, B.; Várez, A. Advancements in quasi-solid-state Li batteries: a rigid hybrid electrolyte using LATP porous ceramic membrane and infiltrated ionic liquid. ACS. Appl. Energy. Mater. 2024, 7, 1527-38.
32. Xin, S.; You, Y.; Wang, S.; Gao, H.; Yin, Y.; Guo, Y. Solid-state lithium metal batteries promoted by nanotechnology: progress and prospects. ACS. Energy. Lett. 2017, 2, 1385-94.
33. Zhou, D.; Shanmukaraj, D.; Tkacheva, A.; Armand, M.; Wang, G. Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 2019, 5, 2326-52.
34. Vineeth, S.; Soni, C. B.; Sungjemmenla; et al. A quasi-solid state polymer electrolyte for high-rate and long-life sodium-metal batteries. J. Energy. Storage. 2023, 73, 108780.
35. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 2014, 114, 11503-618.
36. Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G. Li-ion battery materials: present and future. Mater. Today. 2015, 18, 252-64.
37. Zhang, X.; Cheng, X.; Chen, X.; Yan, C.; Zhang, Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 2017, 27, 1605989.
38. Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 2020, 11, 1550.
39. Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587-603.
40. Zhang, H.; Eshetu, G. G.; Judez, X.; Li, C.; Rodriguez-Martínez, L. M.; Armand, M. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives. Angew. Chem. Int. Ed. 2018, 57, 15002-27.
41. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 2017, 117, 10403-73.
42. Lin, D.; Liu, Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194-206.
43. Lingappan, N.; Lee, W.; Passerini, S.; Pecht, M. A comprehensive review of separator membranes in lithium-ion batteries. Renew. Sustain. Energy. Rev. 2023, 187, 113726.
44. Valverde, A.; Gonçalves, R.; Silva, M. M.; et al. Metal-organic framework based PVDF separators for high rate cycling lithium-ion batteries. ACS. Appl. Energy. Mater. 2020, 3, 11907-19.
45. Zhao, R.; Liang, Z.; Zou, R.; Xu, Q. Metal-organic frameworks for batteries. Joule 2018, 2, 2235-59.
46. Wang, H.; Dai, H. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. Chem. Soc. Rev. 2013, 42, 3088-113.
47. Li, D.; Hu, H.; Chen, B.; Lai, W. Y. Advanced current collector materials for high-performance lithium metal anodes. Small 2022, 18, 2200010.
48. Zhao, E.; Luo, S.; Hu, A.; et al. Rational design of an in-build quasi-solid-state electrolyte for high-performance lithium-ion batteries with the silicon-based anode. Chem. Eng. J. 2023, 463, 142306.
49. Fang, L.; Sun, W.; Hou, W.; Mao, Y.; Wang, Z.; Sun, K. Quasi-solid-state polymer electrolyte based on highly concentrated LiTFSI complexing DMF for ambient-temperature rechargeable lithium batteries. Ind. Eng. Chem. Res. 2022, 61, 7971-81.
50. Wang, P.; He, X.; Lv, Z.; et al. Light-driven polymer-based all-solid-state lithium-sulfur battery operating at room temperature. Adv. Funct. Mater. 2023, 33, 2211074.
51. Manthiram, A.; Yu, X.; Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103.
52. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: a battery of choices. Science 2011, 334, 928-35.
53. Yao, X.; Huang, N.; Han, F.; et al. High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes. Adv. Energy. Mater. 2017, 7, 1602923.
54. Xiao, Q.; Yang, J.; Wang, X.; et al. Carbon-based flexible self-supporting cathode for lithium-sulfur batteries: progress and perspective. Carbon. Energy. 2021, 3, 271-302.
55. Zhai, Y.; Yang, G.; Zeng, Z.; et al. Composite hybrid quasi-solid electrolyte for high-energy lithium metal batteries. ACS. Appl. Energy. Mater. 2021, 4, 7973-82.
56. Li, Z.; Weng, S.; Fu, J.; et al. Nonflammable quasi-solid electrolyte for energy-dense and long-cycling lithium metal batteries with high-voltage Ni-rich layered cathodes. Energy. Storage. Mater. 2022, 47, 542-50.
57. Utpalla, P.; Mor, J.; Pujari, P. K.; Sharma, S. K. High ionic conductivity and ion conduction mechanism in ZIF-8 based quasi-solid-state electrolytes: a positron annihilation and broadband dielectric spectroscopy study. Phys. Chem. Chem. Phys. 2022, 24, 24999-5009.
58. Zhang, W.; Li, S.; Zhang, Y.; Wang, X.; Liu, J.; Zheng, Y. A quasi-solid-state electrolyte with high ionic conductivity for stable lithium-ion batteries. Sci. China. Technol. Sci. 2022, 65, 2369-79.
59. Yang, X.; Zhang, B.; Tian, Y.; et al. Electrolyte design principles for developing quasi-solid-state rechargeable halide-ion batteries. Nat. Commun. 2023, 14, 925.
60. Chen, Z.; Kim, G.; Kim, J.; et al. Highly stable quasi-solid-state lithium metal batteries: reinforced Li1.3Al0.3Ti1.7(PO4)3/Li interface by a protection interlayer. Adv. Energy. Mater. 2021, 11, 2101339.
61. Tian, R.; Jia, J.; Zhai, M.; et al. Design advanced lithium metal anode materials in high energy density lithium batteries. Heliyon 2024, 10, e27181.
62. Angarita-Gomez, S.; Balbuena, P. B. Insights into lithium ion deposition on lithium metal surfaces. Phys. Chem. Chem. Phys. 2020, 22, 21369-82.
63. Zinth, V.; von, L. C.; Hofmann, M.; et al. Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction. J. Power. Sources. 2014, 271, 152-9.
64. Koralalage, M. K.; Shreyas, V.; Arnold, W. R.; et al. Functionalization of cathode-electrolyte interface with ionic liquids for high-performance quasi-solid-state lithium-sulfur batteries: a low-sulfur loading study. Batteries 2024, 10, 155.
65. Liang, S.; Yan, W.; Wu, X.; et al. Gel polymer electrolytes for lithium ion batteries: Fabrication, characterization and performance. Solid. State. Ionics. 2018, 318, 2-18.
66. Li, W.; Li, H.; Liu, J.; et al. Systematic safety evaluation of quasi-solid-state lithium batteries: a case study. Energy. Environ. Sci. 2023, 16, 5444-53.
67. Liu, X.; Jia, H.; Li, H. Flame-retarding quasi-solid polymer electrolytes for high-safety lithium metal batteries. Energy. Storage. Mater. 2024, 67, 103263.
68. Lim, D.; Jeong, B.; Kim, H.; et al. Safety enhanced quasi-solid-state electrolyte based on thiol-ene click chemistry for rechargeable lithium ion batteries. Meet. Abstr. 2021, MA2021-01, 133.
69. Lin, L.; Liu, F.; Zhang, Y.; et al. Adjustable mixed conductive interphase for dendrite-free lithium metal batteries. ACS. Nano. 2022, 16, 13101-10.
70. Lu, X.; Wang, Y.; Xu, X.; Yan, B.; Wu, T.; Lu, L. Polymer-based solid-state electrolytes for high-energy-density lithium-ion batteries - review. Adv. Energy. Mater. 2023, 13, 2301746.
71. Hu, H.; Li, J.; Ji, X. Confining ionic liquids in developing quasi-solid-state electrolytes for lithium metal batteries. Chem. Eur. J. 2024, 30, e202302826.
72. Yu, D.; Tronstad, Z. C.; McCloskey, B. D. Lithium-ion transport and exchange between phases in a concentrated liquid electrolyte containing lithium-ion-conducting inorganic particles. ACS. Energy. Lett. 2024, 9, 1717-24.
73. Zhao, Y.; Song, Z.; Li, X.; et al. Metal organic frameworks for energy storage and conversion. Energy. Storage. Mater. 2016, 2, 35-62.
74. Pan, K.; Zhang, L.; Qian, W.; et al. A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries. Adv. Mater. 2020, 32, 2000399.
75. Bao, H.; Chen, D.; Liao, B.; Yi, Y.; Liu, R.; Sun, Y. Enhanced ionic conduction in metal-organic-framework-based quasi-solid-state electrolytes: mechanistic insights. Energy. Fuels. 2024, 38, 11275-83.
76. Kim, T.; Son, D.; Ono, L. K.; Jiang, Y.; Qi, Y. A solid-liquid hybrid electrolyte for lithium ion batteries enabled by a single-body polymer/indium tin oxide architecture. J. Phys. D:. Appl. Phys. 2021, 54, 475501.
77. Wu, Z.; Yi, Y.; Hai, F.; et al. A metal-organic framework based quasi-solid-state electrolyte enabling continuous ion transport for high-safety and high-energy-density lithium metal batteries. ACS. Appl. Mater. Interfaces. 2023, 15, 22065-74.
78. Han, D.; Zhao, Z.; Wang, W.; et al. Metal organic framework optimized hybrid solid polymer electrolytes with a high lithium-ion transference number and excellent electrochemical stability. Sustain. Energy. Fuels. 2022, 6, 4528-38.
79. Dong, P.; Zhang, X.; Hiscox, W.; et al. Toward high-performance metal-organic-framework-based quasi-solid-state electrolytes: tunable structures and electrochemical properties. Adv. Mater. 2023, 35, e2211841.
80. Li, J.; Weng, Z.; Qin, Z.; et al. Recent advances in multifunctional metal-organic frameworks for lithium metal batteries. Sci. China. Chem. 2024, 67, 759-73.
81. Liu, W.; Mi, Y.; Weng, Z.; Zhong, Y.; Wu, Z.; Wang, H. Functional metal-organic framework boosting lithium metal anode performance via chemical interactions. Chem. Sci. 2017, 8, 4285-91.
82. Zhang, Q.; Xiao, Y.; Li, Q.; et al. Design of thiol-lithium ion interaction in metal-organic framework for high-performance quasi-solid lithium metal batteries. Dalton. Trans. 2021, 50, 2928-35.
83. Yang, H.; Wu, N. Ionic conductivity and ion transport mechanisms of solid-state lithium-ion battery electrolytes: a review. Energy. Sci. Eng. 2022, 10, 1643-71.
84. Li, J.; Li, F.; Zhang, L.; Zhang, H.; Lassi, U.; Ji, X. Recent applications of ionic liquids in quasi-solid-state lithium metal batteries. Green. Chem. Eng. 2021, 2, 253-65.
85. Luo, B.; Wang, Q.; Ji, W.; et al. Suppressing lithium dendrite via hybrid interface layers for high performance quasi-solid-state lithium metal batteries. Chem. Eng. J. 2024, 492, 152152.
86. Zheng, B.; Zhu, J.; Wang, H.; et al. Stabilizing Li10SnP2S12/Li interface via an in situ formed solid electrolyte interphase layer. ACS. Appl. Mater. Interfaces. 2018, 10, 25473-82.
87. Wang, W.; Chai, M.; Lin, R.; et al. Amorphous MOFs for next generation supercapacitors and batteries. Energy. Adv. 2023, 2, 1591-603.
88. Duan, S.; Qian, L.; Zheng, Y.; et al. Mechanisms of the accelerated Li+ conduction in MOF-based solid-state polymer electrolytes for all-solid-state lithium metal batteries. Adv. Mater. 2024, 36, 2314120.
89. Loo, K. L.; Ho, J. W.; Chung, C.; Moon, M.; Yoo, P. J. Ion-transporting channel-embedded MOF-in-COF structures as composite quasi-solid electrolytes with highly enhanced electrochemical properties. J. Mater. Chem. A. 2024, 12, 7875-85.
90. Zhang, Z.; Tian, L.; Zhang, H.; et al. Hexagonal rodlike Cu-MOF-74-derived filler-reinforced composite polymer electrolyte for high-performance solid-state lithium batteries. ACS. Appl. Energy. Mater. 2022, 5, 1095-105.
91. Miner, E. M.; Dincă, M. Metal- and covalent-organic frameworks as solid-state electrolytes for metal-ion batteries. Phil. Trans. R. Soc. A. 2019, 377, 20180225.
92. Hong, C. N.; Crom, A. B.; Feldblyum, J. I.; Lukatskaya, M. R. Metal-organic frameworks for fast electrochemical energy storage: mechanisms and opportunities. Chem 2023, 9, 798-822.
93. Sun, R.; Dou, M.; Chen, Z.; et al. Engineering strategies of metal-organic frameworks toward advanced batteries. Battery. Energy. 2023, 2, 20220064.
94. Yu, J.; Lin, L.; Cheng, L.; Wu, Q.; Zhao, L.; Wang, H. Engineering the interfacial compatibility of a small-molecule quinone cathode toward stable quasi-solid-state lithium-organic batteries. ACS. Sustainable. Chem. Eng. 2024, 12, 9969-77.
95. Kim, M.; Çakmakçı, N.; Song, H.; Jeong, Y. Interfacially-enhanced quasi-solid electrolyte using ionic liquid for lithium-ion battery. Mater. Res. Bull. 2024, 170, 112588.
96. Eftekhari, A. Lithium batteries for electric vehicles: from economy to research strategy. ACS. Sustainable. Chem. Eng. 2019, 7, 5602-13.
97. Zhang, Q.; Liu, B.; Wang, J.; et al. The optimized interfacial compatibility of metal-organic frameworks enables a high-performance quasi-solid metal battery. ACS. Energy. Lett. 2020, 5, 2919-26.
98. Wei, Y.; Hu, F.; Li, Y.; et al. Constructing stable anodic interphase for quasi-solid-state lithium-sulfur batteries. ACS. Appl. Mater. Interfaces. 2020, 12, 39335-41.
99. Brus, J.; Czernek, J.; Urbanova, M.; Rohlíček, J.; Plecháček, T. Transferring lithium ions in the nanochannels of flexible metal-organic frameworks featuring superchaotropic metallacarborane guests: mechanism of ionic conductivity at atomic resolution. ACS. Appl. Mater. Interfaces. 2020, 12, 47447-56.
100. Giacobbe, C.; Lavigna, E.; Maspero, A.; Galli, S. Elucidating the CO2 adsorption mechanisms in the triangular channels of the bis(pyrazolate) MOF Fe2(BPEB)3 by in situ synchrotron X-ray diffraction and molecular dynamics simulations. J. Mater. Chem. A. 2017, 5, 16964-75.
101. Hou, T.; Fong, K. D.; Wang, J.; Persson, K. A. Correction: the solvation structure, transport properties and reduction behavior of carbonate-based electrolytes of lithium-ion batteries. Chem. Sci. 2022, 13, 8205.
102. Xu, W.; Pei, X.; Diercks, C. S.; Lyu, H.; Ji, Z.; Yaghi, O. M. A metal-organic framework of organic vertices and polyoxometalate linkers as a solid-state electrolyte. J. Am. Chem. Soc. 2019, 141, 17522-6.
103. Hou, T.; Xu, W.; Pei, X.; Jiang, L.; Yaghi, O. M.; Persson, K. A. Ionic conduction mechanism and design of metal-organic framework based quasi-solid-state electrolytes. J. Am. Chem. Soc. 2022, 144, 13446-50.
104. Su, N. C.; Noor, S. A. M.; Roslee, M. F.; Mohamed, N. S.; Ahmad, A.; Yahya, M. Z. A. Potential complexes of NaCF3SO3-tetraethylene dimethyl glycol ether (tetraglyme)-based electrolytes for sodium rechargeable battery application. Ionics 2019, 25, 541-9.
105. Singh, H. P.; Kumar, R.; Sekhon, S. S. Correlation between ionic conductivity and fluidity of polymer gel electrolytes containing NH4CF3SO3. Bull. Mater. Sci. 2005, 28, 467-72.
106. Castillo, J.; Santiago, A.; Judez, X.; et al. High energy density lithium-sulfur batteries based on carbonaceous two-dimensional additive cathodes. ACS. Appl. Energy. Mater. 2023, 6, 3579-89.
107. Kwon, W. J.; Kim, H.; Jung, K.; et al. Enhanced Li+ conduction in perovskite Li3xLa/3-x□1/3-2xTiO3 solid-electrolytes via microstructural engineering. J. Mater. Chem. A. 2017, 5, 6257-62.
108. Zhu, Y.; He, X.; Mo, Y. First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A. 2016, 4, 3253-66.
109. Luo, W.; Gong, Y.; Zhu, Y.; et al. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer. Adv. Mater. 2017, 29.
110. Chen, L.; Li, Y.; Li, S.; Fan, L.; Nan, C.; Goodenough, J. B. PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”. Nano. Energy. 2018, 46, 176-84.
111. Wan, J.; Xie, J.; Kong, X.; et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 2019, 14, 705-11.
112. Song, K.; Chen, W. An effective solid-electrolyte interphase for stable solid-state batteries. Chem 2021, 7, 3195-7.
113. Zhou, W.; Wang, S.; Li, Y.; Xin, S.; Manthiram, A.; Goodenough, J. B. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc. 2016, 138, 9385-8.
114. Kim, S. Y.; Cha, H.; Kostecki, R.; Chen, G. Composite cathode design for high-energy all-solid-state lithium batteries with long cycle life. ACS. Energy. Lett. 2023, 8, 521-8.
115. Zhou, B.; Fang, B.; Stosevski, I.; Bonakdarpour, A.; Wilkinson, D. P. Li host carbon materials as the negative electrode for a Li-metal battery - mechanistic and practical assessment. Meet. Abstr. 2022, MA2022-01, 667.
116. Zheng, Z.; Ye, H.; Guo, Z. Recent progress on pristine metal/covalent-organic frameworks and their composites for lithium-sulfur batteries. Energy. Environ. Sci. 2021, 14, 1835-53.
117. Chen, Y.; Wen, K.; Chen, T.; Zhang, X.; Armand, M.; Chen, S. Recent progress in all-solid-state lithium batteries: The emerging strategies for advanced electrolytes and their interfaces. Energy. Storage. Mater. 2020, 31, 401-33.
118. Chen, S.; Wen, K.; Fan, J.; Bando, Y.; Golberg, D. Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes. J. Mater. Chem. A. 2018, 6, 11631-63.
119. Chen, R.; Qu, W.; Guo, X.; Li, L.; Wu, F. The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Mater. Horiz. 2016, 3, 487-516.
120. Ong, J. L.; Loy, A. C. M.; Teng, S. Y.; How, B. S. Future paradigm of 3D printed Ni-based metal organic framework catalysts for dry methane reforming: techno-economic and environmental analyses. ACS. Omega. 2022, 7, 15369-84.
121. Desantis, D.; Mason, J. A.; James, B. D.; Houchins, C.; Long, J. R.; Veenstra, M. Techno-economic analysis of metal-organic frameworks for hydrogen and natural gas storage. Energy. Fuels. 2017, 31, 2024-32.
122. Paul, T.; Juma, A.; Alqerem, R.; Karanikolos, G.; Arafat, H. A.; Dumée, L. F. Scale-up of metal-organic frameworks production: engineering strategies and prospects towards sustainable manufacturing. J. Environ. Chem. Eng. 2023, 11, 111112.
123. Chakraborty, D.; Yurdusen, A.; Mouchaham, G.; Nouar, F.; Serre, C. Large-scale production of metal-organic frameworks. Adv. Funct. Mater. 2024, 34, 2309089.
124. Yusuf, V. F.; Malek, N. I.; Kailasa, S. K. Review on metal-organic framework classification, synthetic approaches, and influencing factors: applications in energy, drug delivery, and wastewater treatment. ACS. Omega. 2022, 7, 44507-31.
125. Sun, C.; Liu, J.; Gong, Y.; Wilkinson, D. P.; Zhang, J. Recent advances in all-solid-state rechargeable lithium batteries. Nano. Energy. 2017, 33, 363-86.
126. Han, X.; Gong, Y.; Fu, K. K.; et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 2017, 16, 572-9.
127. Wang, C.; Fu, K.; Kammampata, S. P.; et al. Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem. Rev. 2020, 120, 4257-300.
128. Kaur, G.; Sharma, S.; Singh, M. D.; Nalwa, K. S.; Sivasubramanian, S. C.; Dalvi, A. Ionic liquid composites with garnet-type Li6.75Al0.25La3Zr2O12: stability, electrical transport, and potential for energy storage applications. Mater. Chem. Phys. 2024, 317, 129205.
129. Zhang, Z.; Zhang, L.; Liu, Y.; et al. Interface-engineered Li7La3Zr2O12-based garnet solid electrolytes with suppressed li-dendrite formation and enhanced electrochemical performance. ChemSusChem 2018, 11, 3774-82.
130. Lin, R.; Jin, Y.; Li, Y.; Zhang, X.; Xiong, Y. Recent advances in ionic liquids-MOF hybrid electrolytes for solid-state electrolyte of lithium battery. Batteries 2023, 9, 314.
131. Subramani, R.; Hsu, S.; Chuang, Y.; Hsu, L.; Lu, K.; Chen, J. Fe-MIL-101 metal organic framework integrated solid polymer electrolytes for high-performance solid-state lithium metal batteries. J. Mater. Chem. A. 2024, 12, 7132-41.
132. Homann, G.; Stolz, L.; Nair, J.; Laskovic, I. C.; Winter, M.; Kasnatscheew, J. Poly(ethylene oxide)-based electrolyte for solid-state-lithium-batteries with high voltage positive electrodes: evaluating the role of electrolyte oxidation in rapid cell failure. Sci. Rep. 2020, 10, 4390.
133. Wang, Q.; Yang, A.; Ma, J.; Yao, M.; Geng, S.; Liu, F. Constructing PTFE@LATP composite solid electrolytes with three-dimensional network for high-performance lithium batteries. Electrochim. Acta. 2023, 467, 143138.
134. Liu, Y.; Xu, Y.; Zhang, Y.; Yu, C.; Sun, X. Thin Li1.3Al0.3Ti1.7(PO4)3-based composite solid electrolyte with a reinforced interface of in situ formed poly(1,3-dioxolane) for lithium metal batteries. J. Colloid. Interface. Sci. 2023, 644, 53-63.
135. Xu, Y.; Zhao, R.; Gao, L.; et al. A fiber-reinforced solid polymer electrolyte by in situ polymerization for stable lithium metal batteries. Nano. Res. 2023, 16, 9259-66.
136. Butreddy, P.; Wijesingha, M.; Laws, S.; Pathiraja, G.; Mo, Y.; Rathnayake, H. Insight into the isoreticularity of Li-MOFs for the design of low-density solid and quasi-solid electrolytes. Chem. Mater. 2023, 35, 9857-78.
137. Gong, X.; Xiao, Q.; Li, Q.; et al. Cross-linked electrospun gel polymer electrolytes for lithium-ion batteries. Chin. J. Polym. Sci. 2024, 42, 1021-8.
138. Lim, N.; Kim, E.; Park, J.; et al. Design of a bioinspired robust three-dimensional cross-linked polymer binder for high-performance Li-ion battery applications. ACS. Appl. Mater. Interfaces. 2023, 15, 54409-18.
139. Shin, W.; Cho, J.; Kannan, A. G.; Lee, Y.; Kim, D. Cross-linked composite gel polymer electrolyte using mesoporous methacrylate-functionalized SiO2 nanoparticles for lithium-ion polymer batteries. Sci. Rep. 2016, 6, BFsrep26332.
140. Röchow, E. T.; Coeler, M.; Pospiech, D.; et al. In situ preparation of crosslinked polymer electrolytes for lithium ion batteries: a comparison of monomer systems. Polymers 2020, 12, 1707.
141. Wen, J.; Zhao, Q.; Jiang, X.; et al. Graphene oxide enabled flexible peo-based solid polymer electrolyte for all-solid-state lithium metal battery. ACS. Appl. Energy. Mater. 2021, 4, 3660-9.
142. Rajamani, A.; Panneerselvam, T.; Murugan, R.; Ramaswamy, A. P. Electrospun derived polymer-garnet composite quasi solid state electrolyte with low interface resistance for lithium metal batteries. Energy 2023, 263, 126058.
143. Huang, Y.; Wang, Y.; Fu, Y. A thermoregulating separator based on black phosphorus/MOFs heterostructure for thermo-stable lithium-sulfur batteries. Chem. Eng. J. 2023, 454, 140250.
144. Lei, H.; Tu, J.; Li, S.; et al. MOF-based quasi-solid-state electrolyte for long-life Al-Se battery. J. Energy. Chem. 2023, 86, 237-45.
145. Zhang, Z.; Huang, Y.; Li, C.; Li, X. Metal-organic framework-supported poly(ethylene oxide) composite gel polymer electrolytes for high-performance lithium/sodium metal batteries. ACS. Appl. Mater. Interfaces. 2021, 13, 37262-72.
146. Li, J.; Gao, L.; Pan, F.; et al. Engineering strategies for suppressing the shuttle effect in lithium-sulfur batteries. Nano-Micro. Lett. 2023, 16, 12.
147. Aslam, M. K.; Niu, Y.; Hussain, T.; et al. How to avoid dendrite formation in metal batteries: innovative strategies for dendrite suppression. Nano. Energy. 2021, 86, 106142.
148. Bai, S.; Kim, B.; Kim, C.; et al. Permselective metal-organic framework gel membrane enables long-life cycling of rechargeable organic batteries. Nat. Nanotechnol. 2021, 16, 77-84.
149. Liu, Q.; Yang, L.; Mei, Z.; et al. Constructing host-guest recognition electrolytes promotes the Li+ kinetics in solid-state batteries. Energy. Environ. Sci. 2024, 17, 780-90.
150. Yang, L.; Chen, J.; Park, S.; Wang, H. Recent progress on metal-organic framework derived carbon and their composites as anode materials for potassium-ion batteries. Energy. Mater. 2023, 3, 300042.
151. Chen, J.; Adit, G.; Li, L.; Zhang, Y.; Chua, D. H. C.; Lee, P. S. Optimization strategies toward functional sodium-ion batteries. Energy. Environ. Mater. 2023, 6, e12633.
152. Lu, X.; Wu, H.; Kong, D.; Li, X.; Shen, L.; Lu, Y. Facilitating lithium-ion conduction in gel polymer electrolyte by metal-organic frameworks. ACS. Mater. Lett. 2020, 2, 1435-41.
153. Fu, X.; Hurlock, M. J.; Ding, C.; Li, X.; Zhang, Q.; Zhong, W. H. MOF-enabled ion-regulating gel electrolyte for long-cycling lithium metal batteries under high voltage. Small 2022, 18, 2106225.
154. Wang, D.; Jin, B.; Yao, X.; et al. Bio-inspired polydopamine-modified ZIF-90-supported gel polymer electrolyte for high-safety lithium metal batteries. ACS. Appl. Energy. Mater. 2023, 6, 11146-56.
155. Murray, L. J.; Dincă, M.; Long, J. R. Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1294-314.
156. Li, J. R.; Sculley, J.; Zhou, H. C. Metal-organic frameworks for separations. Chem. Rev. 2012, 112, 869-932.
157. Ma, L.; Abney, C.; Lin, W. Enantioselective catalysis with homochiral metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1248-56.
158. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van, D. R. P.; Hupp, J. T. Metal-organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105-25.
159. Min, K. S.; Suh, M. P. Silver(I)-polynitrile network solids for anion exchange: anion-induced transformation of supramolecular structure in the crystalline state. J. Am. Chem. Soc. 2000, 122, 6834-40.
160. Horike, S.; Umeyama, D.; Kitagawa, S. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks. Acc. Chem. Res. 2013, 46, 2376-84.
161. Yang, H.; Liu, B.; Bright, J.; et al. A single-ion conducting UiO-66 metal-organic framework electrolyte for all-solid-state lithium batteries. ACS. Appl. Energy. Mater. 2020, 3, 4007-13.
163. Taylor, J. M.; Dekura, S.; Ikeda, R.; Kitagawa, H. Defect control to enhance proton conductivity in a metal-organic framework. Chem. Mater. 2015, 27, 2286-9.
165. Liu, L.; Sun, C. Flexible quasi-solid-state composite electrolyte membrane derived from a metal-organic framework for lithium-metal batteries. ChemElectroChem 2020, 7, 707-15.
166. Zhou, L.; Pan, H.; Yin, G.; et al. Tailoring the function of battery separators via the design of MOF coatings. Adv. Funct. Mater. 2024, 34, 2314246.
167. Wu, X.; Gao, Y.; Bi, J. Understanding the structure-dependent adsorption behavior of four zirconium-based porphyrinic MOFs for the removal of pharmaceuticals. Microporous. Mesoporous. Mater. 2024, 363, 112827.
168. Furukawa, H.; Gándara, F.; Zhang, Y. B.; et al. Water adsorption in porous metal-organic frameworks and related materials. J. Am. Chem. Soc. 2014, 136, 4369-81.
169. Sun, C.; Zhang, J. H.; Yuan, X. F.; et al. ZIF-8-based quasi-solid-state electrolyte for lithium batteries. ACS. Appl. Mater. Interfaces. 2019, 11, 46671-7.
170. Zhu, X.; Chang, Z.; Yang, H.; He, P.; Zhou, H. Highly safe and stable lithium-metal batteries based on a quasi-solid-state electrolyte. J. Mater. Chem. A. 2022, 10, 651-63.
171. Shieh, F. K.; Wang, S. C.; Leo, S. Y.; Wu, K. C. Water-based synthesis of zeolitic imidazolate framework-90 (ZIF-90) with a controllable particle size. Chem. Eur. J. 2013, 19, 11139-42.
172. Kida, K.; Okita, M.; Fujita, K.; Tanaka, S.; Miyake, Y. Formation of high crystalline ZIF-8 in an aqueous solution. CrystEngComm 2013, 15, 1794-801.
173. Yu, T.; Ma, H.; Zhang, H.; Xiong, M.; Liu, Y.; Li, F. Fabrication and characterization of purified esterase-embedded zeolitic imidazolate frameworks for the removal and remediation of herbicide pollution from soil. J. Environ. Manage. 2021, 288, 112450.
174. Deneff, J. I.; Butler, K. S.; Kotula, P. G.; Rue, B. E.; Sava, G. D. F. Expanding the ZIFs repertoire for biological applications with the targeted synthesis of ZIF-20 nanoparticles. ACS. Appl. Mater. Interfaces. 2021, 13, 27295-304.
175. Xing, J.; Schweighauser, L.; Okada, S.; Harano, K.; Nakamura, E. Atomistic structures and dynamics of prenucleation clusters in MOF-2 and MOF-5 syntheses. Nat. Commun. 2019, 10, 3608.
176. Xu, G.; Yamada, T.; Otsubo, K.; Sakaida, S.; Kitagawa, H. Facile “modular assembly” for fast construction of a highly oriented crystalline MOF nanofilm. J. Am. Chem. Soc. 2012, 134, 16524-7.
177. Shen, L.; Wu, H. B.; Liu, F.; et al. Creating lithium-ion electrolytes with biomimetic ionic channels in metal-organic frameworks. Adv. Mater. 2018, 30, 1707476.
178. Wang, X. G.; Cheng, Q.; Yu, Y.; Zhang, X. Z. Controlled nucleation and controlled growth for size predicable synthesis of nanoscale metal-organic frameworks (MOFs): a general and scalable approach. Angew. Chem. Int. Ed. 2018, 57, 7836-40.
179. Qiu, S.; Du, J.; Xiao, Y.; Zhao, Q.; He, G. Hierarchical porous HKUST-1 fabricated by microwave-assisted synthesis with CTAB for enhanced adsorptive removal of benzothiophene from fuel. Sep. Purif. Technol. 2021, 271, 118868.
180. Chen, Y.; Qiao, Z.; Lv, D.; et al. Efficient adsorptive separation of C3H6 over C3H8 on flexible and thermoresponsive CPL-1. Chem. Eng. J. 2017, 328, 360-7.
181. Xiang, H.; Ameen, A.; Shang, J.; et al. Synthesis and modification of moisture-stable coordination pillared-layer metal-organic framework (CPL-MOF) CPL-2 for ethylene/ethane separation. Microporous. Mesoporous. Mater. 2020, 293, 109784.
182. Garai, B.; Bon, V.; Krause, S.; et al. Tunable flexibility and porosity of the metal-organic framework DUT-49 through postsynthetic metal exchange. Chem. Mater. 2020, 32, 889-96.
183. Kolbe, F.; Krause, S.; Bon, V.; Senkovska, I.; Kaskel, S.; Brunner, E. High-pressure in situ 129Xe NMR spectroscopy: insights into switching mechanisms of flexible metal-organic frameworks isoreticular to DUT-49. Chem. Mater. 2019, 31, 6193-201.
184. Wang, C.; Zhang, F.; Yang, J.; Li, J. Rapid and HF-free synthesis of MIL-100(Cr) via steam-assisted method. Mater. Lett. 2019, 252, 286-8.
185. Celeste, A.; Paolone, A.; Itié, J. P.; et al. Mesoporous metal-organic framework MIL-101 at high pressure. J. Am. Chem. Soc. 2020, 142, 15012-9.
186. Hu, J.; Chen, Y.; Zhang, H.; Chen, Z. Controlled syntheses of Mg-MOF-74 nanorods for drug delivery. J. Solid. State. Chem. 2021, 294, 121853.
187. Qi, C.; Xu, L.; Wang, J.; et al. Titanium-containing metal-organic framework modified separator for advanced lithium-sulfur batteries. ACS. Sustainable. Chem. Eng. 2020, 8, 12968-75.
188. Wang, Z.; Li, Z.; Zhang, X. G.; et al. Tailoring multiple sites of metal-organic frameworks for highly efficient and reversible ammonia adsorption. ACS. Appl. Mater. Interfaces. 2021, 13, 56025-34.
189. Su, Y.; Yuan, G.; Hu, J.; et al. Thiosalicylic-acid-mediated coordination structure of nickel center via thermodynamic modulation for aqueous Ni-Zn batteries. Adv. Mater. 2024, 36, 2406094.
190. Leng, X.; Zeng, J.; Yang, M.; et al. Bimetallic Ni-Co MOF@PAN modified electrospun separator enhances high-performance lithium-sulfur batteries. J. Energy. Chem. 2023, 82, 484-96.
191. Razaq, R.; Din, M. M. U.; Småbråten, D. R.; et al. Synergistic effect of bimetallic MOF modified separator for long cycle life lithium-sulfur batteries. Adv. Energy. Mater. 2024, 14, 2302897.
192. Liu, Y.; Li, L.; Wen, A.; Cao, F.; Ye, H. A Janus MXene/MOF separator for the all-in-one enhancement of lithium-sulfur batteries. Energy. Storage. Mater. 2023, 55, 652-9.
193. Han, D. D.; Wang, Z. Y.; Pan, G. L.; Gao, X. P. Metal-organic-framework-based gel polymer electrolyte with immobilized anions to stabilize a lithium anode for a quasi-solid-state lithium-sulfur battery. ACS. Appl. Mater. Interfaces. 2019, 11, 18427-35.
194. Férey, G.; Mellot-Draznieks, C.; Serre, C.; et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040-2.
195. Xu, Z.; Zhao, Y. Y.; Chen, L.; et al. Thermally activated bipyridyl-based Mn-MOFs with Lewis acid-base bifunctional sites for highly efficient catalytic cycloaddition of CO2 with epoxides and Knoevenagel condensation reactions. Dalton. Trans. 2023, 52, 3671-81.
196. Zhang, X.; Zhan, Z.; Li, Z.; Di, L. Thermal activation of CuBTC MOF for CO oxidation: the effect of activation atmosphere. Catalysts 2017, 7, 106.
197. He, Z.; Zhu, X.; Song, Y.; et al. Separator functionalization realizing stable zinc anode through microporous metal-organic framework with special functional group. Energy. Storage. Mater. 2025, 74, 103886.
198. Planchais, A.; Devautour-vinot, S.; Salles, F.; et al. A joint experimental/computational exploration of the dynamics of confined water/Zr-based MOFs systems. J. Phys. Chem. C. 2014, 118, 14441-8.
199. Yang, P.; Zhang, K.; Liu, S.; et al. Ionic selective separator design enables long-life zinc-iodine batteries via synergistic anode stabilization and polyiodide shuttle suppression. Adv. Funct. Mater. 2024, 34, 2410712.
200. Ruan, Z.; Wang, X.; Yuan, X. Improved catalytic performance and stability of defected UiO-66-SO3H in the esterification reaction of cyclohexene with cyclohexanecarboxylic acid. J. Porous. Mater. 2022, 29, 1957-68.
201. Morris, W.; Volosskiy, B.; Demir, S.; et al. Synthesis, structure, and metalation of two new highly porous zirconium metal-organic frameworks. Inorg. Chem. 2012, 51, 6443-5.
202. Kim, H. K.; Yun, W. S.; Kim, M. B.; et al. A chemical route to activation of open metal sites in the copper-based metal-organic framework materials HKUST-1 and Cu-MOF-2. J. Am. Chem. Soc. 2015, 137, 10009-15.
203. Li, H.; Eddaoudi, M.; O’keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276-9.
204. Liu, J.; Culp, J. T.; Natesakhawat, S.; et al. Experimental and theoretical studies of gas adsorption in Cu3(BTC)2: an effective activation procedure. J. Phys. Chem. C. 2007, 111, 9305-13.
205. Lohe, M. R.; Rose, M.; Kaskel, S. Metal-organic framework (MOF) aerogels with high micro- and macroporosity. Chem. Commun. 2009, 6056-8.
206. Nelson, A. P.; Farha, O. K.; Mulfort, K. L.; Hupp, J. T. Supercritical processing as a route to high internal surface areas and permanent microporosity in metal-organic framework materials. J. Am. Chem. Soc. 2009, 131, 458-60.
207. Mondloch, J. E.; Karagiaridi, O.; Farha, O. K.; Hupp, J. T. Activation of metal-organic framework materials. CrystEngComm 2013, 15, 9258.
208. Oh, H.; Maurer, S.; Balderas-xicohtencatl, R.; et al. Efficient synthesis for large-scale production and characterization for hydrogen storage of ligand exchanged MOF-74/174/184-M (M = Mg2+, Ni2+). Int. J. Hydrogen. Energy. 2017, 42, 1027-35.
209. Batten, M. P.; Rubio-martinez, M.; Hadley, T.; et al. Continuous flow production of metal-organic frameworks. Curr. Opin. Chem. Eng. 2015, 8, 55-9.
210. Rubio-Martinez, M.; Avci-Camur, C.; Thornton, A. W.; Imaz, I.; Maspoch, D.; Hill, M. R. New synthetic routes towards MOF production at scale. Chem. Soc. Rev. 2017, 46, 3453-80.
211. Gaab, M.; Trukhan, N.; Maurer, S.; Gummaraju, R.; Müller, U. The progression of Al-based metal-organic frameworks-from academic research to industrial production and applications. Microporous. Mesoporous. Mater. 2012, 157, 131-6.
212. Vepsäläinen, M.; Macedo, D. S.; Gong, H.; Rubio-martinez, M.; Bayatsarmadi, B.; He, B. Electrosynthesis of HKUST-1 with flow-reactor post-processing. Appl. Sci. 2021, 11, 3340.
213. Ren, J.; Dyosiba, X.; Musyoka, N. M.; Langmi, H. W.; Mathe, M.; Liao, S. Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs). Coord. Chem. Rev. 2017, 352, 187-219.
214. Mckinstry, C.; Cathcart, R. J.; Cussen, E. J.; Fletcher, A. J.; Patwardhan, S. V.; Sefcik, J. Scalable continuous solvothermal synthesis of metal organic framework (MOF-5) crystals. Chem. Eng. J. 2016, 285, 718-25.
215. Klimakow, M.; Klobes, P.; Thünemann, A. F.; Rademann, K.; Emmerling, F. Mechanochemical synthesis of metal-organic frameworks: a fast and facile approach toward quantitative yields and high specific surface areas. Chem. Mater. 2010, 22, 5216-21.
216. Tanaka, S.; Kida, K.; Nagaoka, T.; Ota, T.; Miyake, Y. Mechanochemical dry conversion of zinc oxide to zeolitic imidazolate framework. Chem. Commun. 2013, 49, 7884-6.
217. Chen, Z.; Wang, W.; Yao, J.; et al. Toxicity of a molluscicide candidate PPU07 against Oncomelania hupensis (Gredler, 1881) and local fish in field evaluation. Chemosphere 2019, 222, 56-61.
218. Cadot, S.; Veyre, L.; Luneau, D.; Farrusseng, D.; Alessandra, Q. E. A water-based and high space-time yield synthetic route to MOF Ni2(dhtp) and its linker 2,5-dihydroxyterephthalic acid. J. Mater. Chem. A. 2014, 2, 17757-63.
219. Sánchez, L.; Acevedo-peña, P.; Aguilar-frutis, M. Á.; Reguera, E. Improving Mg2+ ionic conductivity in ZIF-8 by Cu (II) doping and mbIm incorporation into the framework. Solid. State. Ionics. 2024, 407, 116497.
220. Mu, A. U.; Cai, G.; Chen, Z. Metal-organic frameworks for the enhancement of lithium-based batteries: a mini review on emerging functional designs. Adv. Sci. 2024, 11, 2305280.
221. Zhang, M.; Wu, L.; Zhu, B.; Liu, Y. Performance enhancement of lithium-metal batteries using the three-dimensional porous network structure a metal-organic framework-aramid cellulose-MXene composite separator. Int. J. Hydrogen. Energy. 2024, 59, 263-71.
222. Shang, W.; Chen, Y.; Han, J.; Ouyang, P.; Fang, C.; Du, J. Dendrite-free Li anode enabled by a metal-organic framework-modified solid polymer electrolyte for high-performance lithium metal batteries. ACS. Appl. Energy. Mater. 2020, 3, 12351-9.
223. Wang, Z.; Du, Z.; Liu, Y.; et al. Metal-organic frameworks and their derivatives for optimizing lithium metal anodes. eScience 2024, 4, 100189.
224. Lee, D. J.; Yu, X.; Sikma, R. E.; et al. Holistic design consideration of metal-organic framework-based composite membranes for lithium-sulfur batteries. ACS. Appl. Mater. Interfaces. 2022, 14, 34742-9.
225. Phung, J.; Zhang, X.; Deng, W.; Li, G. An overview of MOF-based separators for lithium-sulfur batteries. Sustain. Mater. Technol. 2022, 31, e00374.
226. Peng, Y.; Xu, J.; Xu, J.; et al. Metal-organic framework (MOF) composites as promising materials for energy storage applications. Adv. Colloid. Interface. Sci. 2022, 307, 102732.
227. Bai, S.; Liu, X.; Zhu, K.; Wu, S.; Zhou, H. Metal-organic framework-based separator for lithium-sulfur batteries. Nat. Energy. 2016, 1, 16094.
228. Li, Y. W.; Zhang, W. J.; Li, J.; et al. Fe-MOF-derived efficient ORR/OER bifunctional electrocatalyst for rechargeable zinc-air batteries. ACS. Appl. Mater. Interfaces. 2020, 12, 44710-9.
229. He, J.; Chen, Y.; Manthiram, A. Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li-S batteries. Energy. Environ. Sci. 2018, 11, 2560-8.
230. Li, X.; Zhang, F.; Zhang, M.; Zhou, Z.; Zhou, X. Chromium-based metal-organic framework coated separator for improving electrochemical performance and safety of lithium-ion battery. J. Energy. Storage. 2023, 59, 106473.
231. Chang, Z.; Qiao, Y.; Deng, H.; Yang, H.; He, P.; Zhou, H. A liquid electrolyte with de-solvated lithium ions for lithium-metal battery. Joule 2020, 4, 1776-89.
232. Sheng, L.; Wang, Q.; Liu, X.; et al. Suppressing electrolyte-lithium metal reactivity via Li+-desolvation in uniform nano-porous separator. Nat. Commun. 2022, 13, 172.
233. Hu, Q.; Han, G.; Wang, A.; et al. Functionalized MOF enables stable cycling of nickel-rich layered oxides for lithium-ion batteries. Chem. Eng. J. 2024, 497, 154608.
234. Chang, Z.; Yang, H.; Pan, A.; He, P.; Zhou, H. An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell. Nat. Commun. 2022, 13, 6788.
235. Fan, Y.; Niu, Z.; Zhang, F.; Zhang, R.; Zhao, Y.; Lu, G. Suppressing the shuttle effect in lithium-sulfur batteries by a UiO-66-modified polypropylene separator. ACS. Omega. 2019, 4, 10328-35.
236. Han, J.; Gao, S.; Wang, R.; et al. Investigation of the mechanism of metal-organic frameworks preventing polysulfide shuttling from the perspective of composition and structure. J. Mater. Chem. A. 2020, 8, 6661-9.
237. Zhu, F.; Bao, H.; Wu, X.; et al. High-performance metal-organic framework-based single ion conducting solid-state electrolytes for low-temperature lithium metal batteries. ACS. Appl. Mater. Interfaces. 2019, 11, 43206-13.
238. Fan, Z.; He, L.; Li, X.; Xin, X. Inhibiting I-/I3- redox shuttling in Li-O2 batteries by MOF decorated separator. Mater. Res. Bull. 2023, 167, 112412.
239. Aubrey, M. L.; Ameloot, R.; Wiers, B. M.; Long, J. R. Metal-organic frameworks as solid magnesium electrolytes. Energy. Environ. Sci. 2014, 7, 667-71.
240. Ameloot, R.; Aubrey, M.; Wiers, B. M.; et al. Ionic conductivity in the metal-organic framework UiO-66 by dehydration and insertion of lithium tert-butoxide. Chemistry 2013, 19, 5533-6.
241. Zettl, R.; Lunghammer, S.; Gadermaier, B.; et al. High Li+ and Na+ conductivity in new hybrid solid electrolytes based on the porous MIL-121 metal organic framework. Adv. Energy. Mater. 2021, 11, 2003542.
242. Lu, G.; Wei, H.; Shen, C.; et al. Bifunctional MOF doped PEO composite electrolyte for long-life cycle solid lithium ion battery. ACS. Appl. Mater. Interfaces. 2022, 14, 45476-83.
243. Guo, Y.; Sun, M.; Liang, H.; et al. Blocking polysulfides and facilitating lithium-ion transport: polystyrene sulfonate@HKUST-1 membrane for lithium-sulfur batteries. ACS. Appl. Mater. Interfaces. 2018, 10, 30451-9.
244. Kim, S. H.; Yeon, J. S.; Kim, R.; Choi, K. M.; Park, H. S. A functional separator coated with sulfonated metal-organic framework/Nafion hybrids for Li-S batteries. J. Mater. Chem. A. 2018, 6, 24971-8.
245. Chang, Z.; Qiao, Y.; Wang, J.; Deng, H.; He, P.; Zhou, H. Fabricating better metal-organic frameworks separators for Li-S batteries: pore sizes effects inspired channel modification strategy. Energy. Storage. Mater. 2020, 25, 164-71.
246. Wang, Z.; Huang, W.; Hua, J.; et al. An anionic-MOF-based bifunctional separator for regulating lithium deposition and suppressing polysulfides shuttle in Li-S batteries. Small. Methods. 2020, 4, 2000082.
247. Zhou, Z.; Li, Y.; Fang, T.; et al. MOF-derived Co3O4 polyhedrons as efficient polysulfides barrier on polyimide separators for high temperature lithium-sulfur batteries. Nanomaterials 2019, 9, 1574.
248. Suriyakumar, S.; Stephan, A. M.; Angulakshmi, N.; Hassan, M. H.; Alkordi, M. H. Metal-organic framework@SiO2 as permselective separator for lithium-sulfur batteries. J. Mater. Chem. A. 2018, 6, 14623-32.
249. Bai, S.; Zhu, K.; Wu, S.; et al. A long-life lithium-sulphur battery by integrating zinc-organic framework based separator. J. Mater. Chem. A. 2016, 4, 16812-7.
250. Zhou, C.; He, Q.; Li, Z.; et al. A robust electrospun separator modified with in situ grown metal-organic frameworks for lithium-sulfur batteries. Chem. Eng. J. 2020, 395, 124979.
251. Huang, J. Q.; Zhuang, T. Z.; Zhang, Q.; Peng, H. J.; Chen, C. M.; Wei, F. Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries. ACS. Nano. 2015, 9, 3002-11.
252. Lammert, M.; Glißmann, C.; Reinsch, H.; Stock, N. Synthesis and characterization of new Ce(IV)-MOFs exhibiting various framework topologies. Cryst. Growth. Des. 2017, 17, 1125-31.
253. Lee, D. H.; Ahn, J. H.; Park, M.; Eftekhari, A.; Kim, D. Metal-organic framework/carbon nanotube-coated polyethylene separator for improving the cycling performance of lithium-sulfur cells. Electrochim. Acta. 2018, 283, 1291-9.
254. Jiang, G.; Zheng, N.; Chen, X.; et al. In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries. Chem. Eng. J. 2019, 373, 1309-18.
255. Wang, B.; Liu, J.; Mao, C.; et al. A MOF-gel based separator for suppressing redox mediator shuttling in Li-O2 batteries. Small 2024, 20, 2401231.
256. Guang, Z.; Huang, Y.; Chen, C.; Liu, X.; Xu, Z.; Dou, W. Engineering a light-weight, thin and dual-functional interlayer as “polysulfides sieve” capable of synergistic adsorption for high-performance lithium-sulfur batteries. Chem. Eng. J. 2020, 383, 123163.
257. Li, B.; Pan, Y.; Luo, B.; et al. MOF-derived NiCo2S4@C as a separator modification material for high-performance lithium-sulfur batteries. Electrochim. Acta. 2020, 344, 135811.
258. Li, W.; Ye, Y.; Qian, J.; et al. Oxygenated nitrogen-doped microporous nanocarbon as a permselective interlayer for ultrastable lithium-sulfur batteries. ChemElectroChem 2019, 6, 1094-100.