REFERENCES
1. Fan, E.; Li, L.; Wang, Z.; et al. Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects. Chem. Rev. 2020, 120, 7020-63.
2. Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 2930-46.
3. Shahjalal, M.; Roy, P. K.; Shams, T.; et al. A review on second-life of Li-ion batteries: prospects, challenges, and issues. Energy 2022, 241, 122881.
4. Li, H.; Wang, Z.; Chen, L.; Huang, X. Research on advanced materials for Li-ion batteries. Adv. Mater. 2009, 21, 4593-607.
5. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energy. Environ. Sci. 2011, 4, 3243.
6. Pope, M. A.; Aksay, I. A. Structural design of cathodes for Li-S batteries. Adv. Energy. Mater. 2015, 5, 1500124.
7. Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19-29.
8. Choi, N. S.; Chen, Z.; Freunberger, S. A.; et al. Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed. 2012, 51, 9994-10024.
9. Zhou, G.; Chen, H.; Cui, Y. Formulating energy density for designing practical lithium-sulfur batteries. Nat. Energy. 2022, 7, 312-9.
10. Benveniste, G.; Sánchez, A.; Rallo, H.; Corchero, C.; Amante, B. Comparative life cycle assessment of Li-Sulphur and Li-ion batteries for electric vehicles. Resour. Conserv. Recycl. Adv. 2022, 15, 200086.
11. Benveniste, G.; Rallo, H.; Canals, C. L.; Merino, A.; Amante, B. Comparison of the state of lithium-sulphur and lithium-ion batteries applied to electromobility. J. Environ. Manag. 2018, 226, 1-12.
12. Zhu, K.; Wang, C.; Chi, Z.; et al. How far away are lithium-sulfur batteries from commercialization? Front. Energy. Res. 2019, 7, 123.
13. Huang, Y.; Lin, L.; Zhang, C.; et al. Recent advances and strategies toward polysulfides shuttle inhibition for high-performance Li-S batteries. Adv. Sci. 2022, 9, e2106004.
14. Wang, Z.; Li, Y.; Ji, H.; Zhou, J.; Qian, T.; Yan, C. Unity of opposites between soluble and insoluble lithium polysulfides in lithium-sulfur batteries. Adv. Mater. 2022, 34, e2203699.
15. Hou, L. P.; Li, Z.; Yao, N.; et al. Weakening the solvating power of solvents to encapsulate lithium polysulfides enables long-cycling lithium-sulfur batteries. Adv. Mater. 2022, 34, e2205284.
16. Liu, F.; Lu, W.; Huang, J.; et al. Detangling electrolyte chemical dynamics in lithium sulfur batteries by operando monitoring with optical resonance combs. Nat. Commun. 2023, 14, 7350.
17. Liu, D.; Zhang, C.; Zhou, G.; et al. Catalytic effects in lithium-sulfur batteries: promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 2018, 5, 1700270.
18. Xu, N.; Qian, T.; Liu, X.; Liu, J.; Chen, Y.; Yan, C. Greatly suppressed shuttle effect for improved lithium sulfur battery performance through short chain intermediates. Nano. Lett. 2017, 17, 538-43.
19. Lei, T.; Chen, W.; Lv, W.; et al. Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries. Joule 2018, 2, 2091-104.
20. Jeong, Y. C.; Kim, J. H.; Nam, S.; Park, C. R.; Yang, S. J. Rational design of nanostructured functional interlayer/separator for advanced Li-S batteries. Adv. Funct. Mater. 2018, 28, 1707411.
21. Xiang, Y.; Li, J.; Lei, J.; et al. Advanced separators for lithium-ion and lithium-sulfur batteries: a review of recent progress. ChemSusChem 2016, 9, 3023-39.
22. Huang, J.; Zhang, Q.; Wei, F. Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: progress and prospects. Energy. Storage. Mater. 2015, 1, 127-45.
23. Waqas, M.; Niu, Y.; Tang, M.; et al. A decade of development in cathode-facing surface modified separators for high-performance Li-S batteries. Energy. Storage. Mater. 2024, 72, 103682.
24. Chung, S. H.; Manthiram, A. A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium-sulfur batteries. Adv. Mater. 2014, 26, 7352-7.
25. Su, Y. S.; Manthiram, A. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat. Commun. 2012, 3, 1166.
26. Chen, L.; Yu, H.; Li, W.; Dirican, M.; Liu, Y.; Zhang, X. Interlayer design based on carbon materials for lithium-sulfur batteries: a review. J. Mater. Chem. A. 2020, 8, 10709-35.
27. Li, S.; Zhang, W.; Zheng, J.; Lv, M.; Song, H.; Du, L. Inhibition of polysulfide shuttles in Li-S batteries: modified separators and solid-state electrolytes. Adv. Energy. Mater. 2021, 11, 2000779.
28. Chung, S.; Manthiram, A. Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium-sulfur batteries. Adv. Funct. Mater. 2014, 24, 5299-306.
29. Balach, J.; Jaumann, T.; Klose, M.; Oswald, S.; Eckert, J.; Giebeler, L. Functional mesoporous carbon-coated separator for long-life, high-energy lithium-sulfur batteries. Adv. Funct. Mater. 2015, 25, 5285-91.
30. Guillerm, V.; Ragon, F.; Dan-Hardi, M.; et al. A series of isoreticular, highly stable, porous zirconium oxide based metal-organic frameworks. Angew. Chem. Int. Ed. 2012, 51, 9267-71.
31. Latroche, M.; Surblé, S.; Serre, C.; et al. Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101. Angew. Chem. Int. Ed. 2006, 118, 8407-11.
32. Serre, C.; Férey, G. Hybrid open frameworks. 8. Hydrothermal synthesis, crystal structure, and thermal behavior of the first three-dimensional titanium(IV) diphosphonate with an open structure: Ti3O2(H2O)2(O3P-(CH2)-PO3)2·(H2O)2, or MIL-22. Inorg. Chem. 1999, 38, 5370-3.
33. Gagnon, K. J.; Perry, H. P.; Clearfield, A. Conventional and unconventional metal-organic frameworks based on phosphonate ligands: MOFs and UMOFs. Chem. Rev. 2012, 112, 1034-54.
34. Serre, C.; Groves, J. A.; Lightfoot, P.; et al. Synthesis, structure and properties of related microporous N,N′-piperazinebismethylenephosphonates of aluminum and titanium. Chem. Mater. 2006, 18, 1451-7.
35. Fang, R.; Zhao, S.; Sun, Z.; Wang, D. W.; Cheng, H. M.; Li, F. More reliable lithium-sulfur batteries: status, solutions and prospects. Adv. Mater. 2017, 29, 1606823.
36. Manthiram, A.; Fu, Y.; Chung, S. H.; Zu, C.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751-87.
37. Yang, H.; Wang, X. Secondary-component incorporated hollow MOFs and derivatives for catalytic and energy-related applications. Adv. Mater. 2019, 31, e1800743.
38. Xu, Y.; Chen, Z.; Wang, J.; et al. Design of quasi-metal-organic frameworks for solid polymer electrolytes enabling an ultra-stable interface with Li metal anode. Angew. Chem. Int. Ed. 2025, 64, e202416170.
39. Zhou, C.; Li, Z.; Xu, X.; Mai, L. Metal-organic frameworks enable broad strategies for lithium-sulfur batteries. Natl. Sci. Rev. 2021, 8, nwab055.
40. Zhu, D.; Long, T.; Xu, B.; et al. Recent advances in interlayer and separator engineering for lithium-sulfur batteries. J. Energy. Chem. 2021, 57, 41-60.
41. Tao, X.; Yang, Z.; Yan, R.; et al. Engineering MOFs-derived nanoarchitectures with efficient polysulfides catalytic sites for advanced Li-S batteries. Adv. Mater. Technol. 2023, 8, 2200238.
42. Zhou, T.; Liang, J.; Ye, S.; Zhang, Q.; Liu, J. Fundamental, application and opportunities of single atom catalysts for Li-S batteries. Energy. Storage. Mater. 2023, 55, 322-55.
43. Zheng, Y.; Zheng, S.; Xue, H.; Pang, H. Metal-organic frameworks for lithium-sulfur batteries. J. Mater. Chem. A. 2019, 7, 3469-91.
44. Jiang, G.; Jiang, N.; Zheng, N.; et al. MOF-derived porous Co3O4-NC nanoflake arrays on carbon fiber cloth as stable hosts for dendrite-free Li metal anodes. Energy. Storage. Mater. 2019, 23, 181-9.
45. Li, Z.; Li, C.; Ge, X.; et al. Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries. Nano. Energy. 2016, 23, 15-26.
46. Wang, C.; Song, H.; Yu, C.; et al. Iron single-atom catalyst anchored on nitrogen-rich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries. J. Mater. Chem. A. 2020, 8, 3421-30.
47. Boyd, D. A. Sulfur and its role in modern materials science. Angew. Chem. Int. Ed. 2016, 55, 15486-502.
48. He, J.; Manthiram, A. A review on the status and challenges of electrocatalysts in lithium-sulfur batteries. Energy. Storage. Mater. 2019, 20, 55-70.
49. Suriyakumar, S.; Stephan, A. M. Mitigation of polysulfide shuttling by interlayer/permselective separators in lithium-sulfur batteries. ACS. Appl. Energy. Mater. 2020, 3, 8095-129.
50. Horcajada, P.; Chalati, T.; Serre, C.; et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9, 172-8.
51. Islamoglu, T.; Idrees, K. B.; Son, F. A.; et al. Are you using the right probe molecules for assessing the textural properties of metal-organic frameworks? J. Mater. Chem. A. 2021, 10, 157-73.
52. Furukawa, H.; Ko, N.; Go, Y. B.; et al. Ultrahigh porosity in metal-organic frameworks. Science 2010, 329, 424-8.
53. Zhang, X.; Chen, Z.; Liu, X.; et al. A historical overview of the activation and porosity of metal-organic frameworks. Chem. Soc. Rev. 2020, 49, 7406-27.
54. Kang, X.; He, T.; Zou, R.; et al. Size effect for inhibiting polysulfides shuttle in lithium-sulfur batteries. Small 2024, 20, e2306503.
55. Chang, Z.; Qiao, Y.; Wang, J.; Deng, H.; He, P.; Zhou, H. Fabricating better metal-organic frameworks separators for Li-S batteries: pore sizes effects inspired channel modification strategy. Energy. Storage. Mater. 2020, 25, 164-71.
56. Hong, X. J.; Tan, T. X.; Guo, Y. K.; et al. Confinement of polysulfides within bi-functional metal-organic frameworks for high performance lithium-sulfur batteries. Nanoscale 2018, 10, 2774-80.
57. Ji, Z.; Han, B.; Li, Q.; et al. Anchoring lithium polysulfides via affinitive interactions: electrostatic attraction, hydrogen bonding, or in parallel? J. Phys. Chem. C. 2015, 119, 20495-502.
58. Wang, Z.; Huang, W.; Hua, J.; et al. An anionic-MOF-based bifunctional separator for regulating lithium deposition and suppressing polysulfides shuttle in Li-S batteries. Small. Methods. 2020, 4, 2000082.
59. Wang, Z.; Wang, B.; Yang, Y.; et al. Mixed-metal-organic framework with effective lewis acidic sites for sulfur confinement in high-performance lithium-sulfur batteries. ACS. Appl. Mater. Interfaces. 2015, 7, 20999-1004.
60. Zheng, J.; Tian, J.; Wu, D.; et al. Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries. Nano. Lett. 2014, 14, 2345-52.
61. He, S.; Yang, J.; Liu, S.; Wang, X.; Qiu, J. A universal MOF-confined strategy to synthesize atomically dispersed metal electrocatalysts toward fast redox conversion in lithium-sulfur batteries. Adv. Funct. Mater. 2024, 34, 2314133.
62. Borchardt, L.; Oschatz, M.; Kaskel, S. Carbon materials for lithium sulfur batteries-ten critical questions. Chemistry 2016, 22, 7324-51.
63. Han, J.; Gao, S.; Wang, R.; et al. Investigation of the mechanism of metal-organic frameworks preventing polysulfide shuttling from the perspective of composition and structure. J. Mater. Chem. A. 2020, 8, 6661-9.
64. Zang, Y.; Pei, F.; Huang, J.; Fu, Z.; Xu, G.; Fang, X. Large-area preparation of crack-free crystalline microporous conductive membrane to upgrade high energy lithium-sulfur batteries. Adv. Energy. Mater. 2018, 8, 1802052.
65. Chung, S. H.; Manthiram, A. High-performance Li-S batteries with an ultra-lightweight MWCNT-coated separator. J. Phys. Chem. Lett. 2014, 5, 1978-83.
66. Yang, H. C.; Xie, Y.; Hou, J.; Cheetham, A. K.; Chen, V.; Darling, S. B. Janus membranes: creating asymmetry for energy efficiency. Adv. Mater. 2018, 30, e1801495.
67. Li, M.; Wan, Y.; Huang, J.; et al. Metal-organic framework-based separators for enhancing Li-S battery stability: mechanism of mitigating polysulfide diffusion. ACS. Energy. Lett. 2017, 2, 2362-7.
68. Yang, H. C.; Hou, J.; Chen, V.; Xu, Z. K. Janus membranes: exploring duality for advanced separation. Angew. Chem. Int. Ed. 2016, 55, 13398-407.
69. Wu, F.; Zhao, S.; Chen, L.; et al. Metal-organic frameworks composites threaded on the CNT knitted separator for suppressing the shuttle effect of lithium sulfur batteries. Energy. Storage. Mater. 2018, 14, 383-91.
70. Ma, B.; Zhang, X.; Deng, X.; et al. Construction of KB@ZIF-8/PP composite separator for lithium-sulfur batteries with enhanced electrochemical performance. Polymers 2021, 13, 4210.
71. Razaq, R.; Din, M. M. U.; Småbråten, D. R.; et al. Synergistic effect of bimetallic MOF modified separator for long cycle life lithium-sulfur batteries. Adv. Energy. Mater. 2024, 14, 2302897.
72. Fan, Y.; Niu, Z.; Zhang, F.; Zhang, R.; Zhao, Y.; Lu, G. Suppressing the shuttle effect in lithium-sulfur batteries by a UiO-66-modified polypropylene separator. ACS. Omega. 2019, 4, 10328-35.
73. Wang, X.; Zhang, X.; Zhao, Y.; et al. Accelerated multi-step sulfur redox reactions in lithium-sulfur batteries enabled by dual defects in metal-organic framework-based catalysts. Angew. Chem. Int. Ed. 2023, 62, e202306901.
74. Li, L.; Tu, H.; Wang, J.; et al. Electrocatalytic MOF-carbon bridged network accelerates Li+-solvents desolvation for high Li+ diffusion toward rapid sulfur redox kinetics. Adv. Funct. Mater. 2023, 33, 2212499.
75. Guo, S.; Xiao, Y.; Wang, J.; et al. Ordered structure of interlayer constructed with metal-organic frameworks improves the performance of lithium-sulfur batteries. Nano. Res. 2021, 14, 4556-62.
76. Lin, S.; Dong, J.; Chen, R.; et al. Lithium sulfonate-rich MOF modified separator enables high performance lithium-sulfur batteries. J. Alloys. Compd. 2023, 965, 171389.
77. Hong, X. J.; Song, C. L.; Yang, Y.; et al. Cerium based metal-organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium-sulfur batteries. ACS. Nano. 2019, 13, 1923-31.
78. Tian, M.; Pei, F.; Yao, M.; et al. Ultrathin MOF nanosheet assembled highly oriented microporous membrane as an interlayer for lithium-sulfur batteries. Energy. Storage. Mater. 2019, 21, 14-21.
79. Chen, H.; Xiao, Y.; Chen, C.; et al. Conductive MOF-modified separator for mitigating the shuttle effect of lithium-sulfur battery through a filtration method. ACS. Appl. Mater. Interfaces. 2019, 11, 11459-65.
80. Wang, J.; Zhang, X.; Wang, X.; et al. Activation of MOF catalysts with low steric hindrance via undercoordination chemistry for efficient polysulfide conversion in lithium-sulfur battery. Adv. Energy. Mater. 2024, 14, 2402072.
81. Katz, M. J.; Brown, Z. J.; Colón, Y. J.; et al. A facile synthesis of UiO-66, UiO-67 and their derivatives. Chem. Commun. 2013, 49, 9449-51.
82. Ponnada, S.; Mansoor, M.; Aslfattahi, N.; et al. Sustainable metal-organic framework co-engineered glass fiber separators for safer and longer cycle life of Li-S batteries. J. Alloys. Compd. 2023, 941, 168962.
83. Yang, Y.; Ma, S.; Xia, M.; et al. Elaborately converting hierarchical NiCo-LDH to rod-like LDH-decorated MOF as interlayer for high-performance lithium-sulfur battery. Mater. Today. Phys. 2023, 35, 101112.
84. Ren, Y.; Zhai, Q.; Wang, B.; et al. Synergistic adsorption-electrocatalysis of 2D/2D heterostructure toward high performance Li-S batteries. Chem. Eng. J. 2022, 439, 135535.
85. Bai, S.; Liu, X.; Zhu, K.; Wu, S.; Zhou, H. Metal-organic framework-based separator for lithium-sulfur batteries. Nat. Energy. 2016, 1, BFnenergy201694.
86. Bai, S.; Zhu, K.; Wu, S.; et al. A long-life lithium-sulphur battery by integrating zinc-organic framework based separator. J. Mater. Chem. A. 2016, 4, 16812-7.
87. He, Y.; Chang, Z.; Wu, S.; et al. Simultaneously inhibiting lithium dendrites growth and polysulfides shuttle by a flexible MOF-based membrane in Li-S batteries. Adv. Energy. Mater. 2018, 8, 1802130.
88. Li, Y.; Lin, S.; Wang, D.; et al. Single atom array mimic on ultrathin MOF nanosheets boosts the safety and life of lithium-sulfur batteries. Adv. Mater. 2020, 32, e1906722.
89. Li, J.; Jiao, C.; Zhu, J.; et al. Hybrid co-based MOF nanoboxes/CNFs interlayer as microreactors for polysulfides-trapping in lithium-sulfur batteries. J. Energy. Chem. 2021, 57, 469-76.
90. Zheng, S.; Sun, D.; Wu, L.; Liu, S.; Liu, G. Carbon fiber supported two-dimensional ZIF-7 interlayer for durable lithium-sulfur battery. J. Alloys. Compd. 2021, 870, 159412.
91. Li, L.; Luo, Y.; Wang, Y.; Zhang, Z.; Wu, F.; Li, J. Rational design of a well-aligned metal-organic framework nanopillar array for superior lithium-sulfur batteries. Chem. Eng. J. 2023, 454, 140043.
92. Wang, Y.; Deng, Z.; Huang, J.; et al. 2D Zr-Fc metal-organic frameworks with highly efficient anchoring and catalytic conversion ability towards polysulfides for advanced Li-S battery. Energy. Storage. Mater. 2021, 36, 466-77.
93. Chiochan, P.; Kaewruang, S.; Phattharasupakun, N.; et al. Chemical adsorption and physical confinement of polysulfides with the janus-faced interlayer for high-performance lithium-sulfur batteries. Sci. Rep. 2017, 7, 17703.
94. Jin, G.; Zhang, J.; Dang, B.; Wu, F.; Li, J. Engineering zirconium-based metal-organic framework-801 films on carbon cloth as shuttle-inhibiting interlayers for lithium-sulfur batteries. Front. Chem. Sci. Eng. 2022, 16, 511-22.
95. Lu, W.; Pang, Z.; Lamaire, A.; et al. Unraveling the mechanisms of zirconium metal-organic frameworks-based mixed-matrix membranes preventing polysulfide shuttling. Small. Sci. 2024, 4, 2300339.
96. Ma, X.; Lou, Y.; Chen, X.; Shi, Z.; Xu, Y. Multifunctional flexible composite aerogels constructed through in-situ growth of metal-organic framework nanoparticles on bacterial cellulose. Chem. Eng. J. 2019, 356, 227-35.
97. Yang, J.; Chen, F.; Li, C.; Bai, T.; Long, B.; Zhou, X. A free-standing sulfur-doped microporous carbon interlayer derived from luffa sponge for high performance lithium-sulfur batteries. J. Mater. Chem. A. 2016, 4, 14324-33.
98. Dechnik, J.; Gascon, J.; Doonan, C. J.; Janiak, C.; Sumby, C. J. Mixed-matrix membranes. Angew. Chem. Int. Ed. 2017, 56, 9292-310.
99. Lu, Y.; Zhang, H.; Chan, J. Y.; et al. Homochiral MOF-polymer mixed matrix membranes for efficient separation of chiral molecules. Angew. Chem. Int. Ed. 2019, 131, 17084-91.
100. Cheng, Y.; Ying, Y.; Japip, S.; et al. Advanced porous materials in mixed matrix membranes. Adv. Mater. 2018, 30, e1802401.
101. Goh, S. H.; Lau, H. S.; Yong, W. F. Metal-organic frameworks (MOFs)-based mixed matrix membranes (MMMs) for gas separation: a review on advanced materials in harsh environmental applications. Small 2022, 18, e2107536.
102. Chung, T.; Jiang, L. Y.; Li, Y.; Kulprathipanja, S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 2007, 32, 483-507.
103. Khulbe, K. C.; Matsuura, T.; Feng, C. Y.; Ismail, A. F. Recent development on the effect of water/moisture on the performance of zeolite membrane and MMMs containing zeolite for gas separation; review. RSC. Adv. 2016, 6, 42943-61.
104. Denny, M. S. J.; Cohen, S. M. In situ modification of metal-organic frameworks in mixed-matrix membranes. Angew. Chem. Int. Ed. 2015, 54, 9029-32.
105. Sung, S.; Kim, B. H.; Lee, S.; Choi, S.; Yoon, W. Y. Increasing sulfur utilization in lithium-sulfur batteries by a Co-MOF-74@MWCNT interlayer. J. Energy. Chem. 2021, 60, 186-93.
106. Liang, J.; Sun, Z.; Li, F.; Cheng, H. Carbon materials for Li-S batteries: functional evolution and performance improvement. Energy. Storage. Mater. 2016, 2, 76-106.
107. Leng, X.; Zeng, J.; Yang, M.; et al. Bimetallic Ni-Co MOF@PAN modified electrospun separator enhances high-performance lithium-sulfur batteries. J. Energy. Chem. 2023, 82, 484-96.
108. Su, Y. S.; Manthiram, A. A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer. Chem. Commun. 2012, 48, 8817-9.
109. Wei, S. Z.; Li, W.; Cha, J. J.; et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 2013, 4, 1331.
110. Gao, P.; Xu, S.; Chen, Z.; et al. Flexible and hierarchically structured sulfur composite cathode based on the carbonized textile for high-performance Li-S batteries. ACS. Appl. Mater. Interfaces. 2018, 10, 3938-47.
111. Li, Z.; Zhang, J.; Lou, X. W. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries. Angew. Chem. Int. Ed. 2015, 127, 13078-82.
112. Liang, X.; Nazar, L. F. In situ reactive assembly of scalable core-shell sulfur-MnO2 composite cathodes. ACS. Nano. 2016, 10, 4192-8.
113. Carter, R.; Oakes, L.; Muralidharan, N.; Cohn, A. P.; Douglas, A.; Pint, C. L. Polysulfide anchoring mechanism revealed by atomic layer deposition of V2O5 and sulfur-filled carbon nanotubes for lithium-sulfur batteries. ACS. Appl. Mater. Interfaces. 2017, 9, 7185-92.
114. Zhang, Y.; Wang, L.; Zhang, A.; et al. Novel V2O5/S composite cathode material for the advanced secondary lithium batteries. Solid. State. Ion. 2010, 181, 835-8.
115. Han, X.; Xu, Y.; Chen, X.; et al. Reactivation of dissolved polysulfides in Li-S batteries based on atomic layer deposition of Al2O3 in nanoporous carbon cloth. Nano. Energy. 2013, 2, 1197-206.
116. Zhang, Z.; Lai, Y.; Zhang, Z.; Zhang, K.; Li, J. Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries. Electrochim. Acta. 2014, 129, 55-61.
117. Ahn, W.; Lim, S. N.; Lee, D. U.; Kim, K.; Chen, Z.; Yeon, S. Interaction mechanism between a functionalized protective layer and dissolved polysulfide for extended cycle life of lithium sulfur batteries. J. Mater. Chem. A. 2015, 3, 9461-7.
118. Yim, T.; Han, S. H.; Park, N. H.; et al. Effective polysulfide rejection by dipole-aligned BaTiO3 coated separator in lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 7817-23.
119. Zhang, Z.; Fang, Z.; Xiang, Y.; et al. Cellulose-based material in lithium-sulfur batteries: a review. Carbohydr. Polym. 2021, 255, 117469.
120. Tignol, P.; Pimenta, V.; Dupont, A. L.; et al. A Sustainable one-pot preparation method for very high porous solids loading paper membranes. ChemRxiv2023.
121. Batyrgali, N.; Yerkinbekova, Y.; Tolganbek, N.; Kalybekkyzy, S.; Bakenov, Z.; Mentbayeva, A. Recent advances on modification of separator for Li/S batteries. ACS. Appl. Energy. Mater. 2023, 6, 588-604.
122. Ryu, J.; Song, W.; Lee, S.; Choi, S.; Park, S. A game changer: functional nano/micromaterials for smart rechargeable batteries. Adv. Funct. Mater. 2020, 30, 1902499.
123. Pathak, A. D.; Cha, E.; Choi, W. Towards the commercialization of Li-S battery: from lab to industry. Energy. Storage. Mater. 2024, 72, 103711.
124. Zheng, Z.; Guo, H.; Pei, F.; et al. High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene-like nanosheets for Li-S batteries. Adv. Funct. Mater. 2016, 26, 8952-9.
125. Xiang, Y.; Lu, L.; Kottapalli, A. G. P.; Pei, Y. Status and perspectives of hierarchical porous carbon materials in terms of high-performance lithium-sulfur batteries. Carbon. Energy. 2022, 4, 346-98.
126. Pei, F.; Lin, L.; Fu, A.; et al. A two-dimensional porous carbon-modified separator for high-energy-density Li-S batteries. Joule 2018, 2, 323-36.
127. Doris, S. E.; Ward, A. L.; Frischmann, P. D.; Li, L.; Helms, B. A. Understanding and controlling the chemical evolution and polysulfide-blocking ability of lithium-sulfur battery membranes cast from polymers of intrinsic microporosity. J. Mater. Chem. A. 2016, 4, 16946-52.
128. Hou, J.; Han, L.; Sun, S.; et al. Single-walled carbon nanotubes film supported lithiated PIM-1 ultrathin selective barrier: a multifunctional layer for polypropylene separator to boost performance of Li-S batteries. Polymer 2023, 281, 126137.
129. Liu, W.; Zhang, K.; Ma, L.; et al. An ion sieving conjugated microporous thermoset ultrathin membrane for high-performance Li-S battery. Energy. Storage. Mater. 2022, 49, 1-10.
130. Zhu, K.; Li, Z.; Yu, M.; et al. Multiple boosting Janus membranes synergized with Li-rich PAF-6 and carbon nanoparticles for high performance lithium-sulfur batteries. J. Mater. Chem. A. 2022, 10, 24106-14.
131. Zhang, Z.; Liu, Y.; Li, Z.; et al. Chemical and physical synergism between PAF-54 and SFPEEKK for effective shuttle effect inhibition of lithium-sulfur battery. Mater. Today. Energy. 2023, 38, 101455.
132. Ghasemiestahbanati, E.; Shehzad, A.; Konstas, K.; et al. Exceptional lithium diffusion through porous aromatic framework (PAF) interlayers delivers high capacity and long-life lithium-sulfur batteries. J. Mater. Chem. A. 2022, 10, 902-11.
133. Cheng, Z.; Pan, H.; Zhong, H.; Xiao, Z.; Li, X.; Wang, R. Porous organic polymers for polysulfide trapping in lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1707597.
134. Geng, K.; He, T.; Liu, R.; et al. Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 2020, 120, 8814-933.
135. Sasmal, H. S.; Aiyappa, H. B.; Bhange, S. N.; et al. Superprotonic conductivity in flexible porous covalent organic framework membranes. Angew. Chem. Int. Ed. 2018, 130, 11060-4.
136. Dey, K.; Pal, M.; Rout, K. C.; et al. Selective molecular separation by interfacially crystallized covalent organic framework thin films. J. Am. Chem. Soc. 2017, 139, 13083-91.
137. Dey, K.; Bhunia, S.; Sasmal, H. S.; Reddy, C. M.; Banerjee, R. Self-assembly-driven nanomechanics in porous covalent organic framework thin films. J. Am. Chem. Soc. 2021, 143, 955-63.
138. Yoo, J.; Cho, S. J.; Jung, G. Y.; et al. COF-net on CNT-net as a molecularly designed, hierarchical porous chemical trap for polysulfides in lithium-sulfur batteries. Nano. Lett. 2016, 16, 3292-300.
139. Wang, J.; Si, L.; Wei, Q.; Hong, X.; Cai, S.; Cai, Y. Covalent organic frameworks as the coating layer of ceramic separator for high-efficiency lithium-sulfur batteries. ACS. Appl. Nano. Mater. 2018, 1, 132-8.
140. Hu, B.; Xu, J.; Fan, Z.; et al. Covalent organic framework based lithium-sulfur batteries: materials, interfaces, and solid-state electrolytes. Adv. Energy. Mater. 2023, 13, 2203540.
141. Koner, K.; Sasmal, H. S.; Shetty, D.; Banerjee, R. Thickness-driven synthesis and applications of covalent organic framework nanosheets. Angew. Chem. Int. Ed. 2024, 136, e202406418.
142. Sasmal, H. S.; Kumar, M. A.; Majumder, P.; Banerjee, R. Landscaping covalent organic framework nanomorphologies. J. Am. Chem. Soc. 2022, 144, 11482-98.
143. Kandambeth, S.; Dey, K.; Banerjee, R. Covalent organic frameworks: chemistry beyond the structure. J. Am. Chem. Soc. 2019, 141, 1807-22.