REFERENCES

1. Parson, E. A.; Keith, D. W. Fossil fuels without CO2 emissions. Science 1998, 282, 1053-4.

2. Fan, X.; Rabelo, M.; Hu, Y.; Khokhar, M. Q.; Kim, Y.; Yi, J. Factors affecting the performance of HJT silicon solar cells in the intrinsic and emitter layers: a review. Trans. Electr. Electron. Mater. 2023, 24, 123-31.

3. Cho, J.; Kim, B.; Ryu, S.; et al. Multifunctional green solvent for efficient perovskite solar cells. Electron. Mater. Lett. 2023, 19, 462-70.

4. Muradov, N. Low to near-zero CO2 production of hydrogen from fossil fuels: status and perspectives. Int. J. Hydrogen. Energy. 2017, 42, 14058-88.

5. Detz, R. J.; Ferchaud, C. J.; Kalkman, A. J.; et al. Electrochemical CO2 conversion technologies: state-of-the-art and future perspectives. Sustainable. Energy. Fuels. 2023, 7, 5445-72.

6. Das, T. K.; Jesionek, M.; Çelik, Y.; Poater, A. Catalytic polymer nanocomposites for environmental remediation of wastewater. Sci. Total. Environ. 2023, 901, 165772.

7. Khokhar, M. Q.; Yousuf, H.; Jeong, S.; et al. A review on p-type tunnel oxide passivated contact (TOPCon) solar cell. Trans. Electr. Electron. Mater. 2023, 24, 169-77.

8. Anwar, M. N.; Fayyaz, A.; Sohail, N. F.; et al. CO2 utilization: turning greenhouse gas into fuels and valuable products. J. Environ. Manage. 2020, 260, 110059.

9. Peter, S. C. Reduction of CO2 to chemicals and fuels: a solution to global warming and energy crisis. ACS. Energy. Lett. 2018, 3, 1557-61.

10. Song, Q.; Ma, R.; Liu, P.; Zhang, K.; He, L. Recent progress in CO2 conversion into organic chemicals by molecular catalysis. Green. Chem. 2023, 25, 6538-60.

11. Xia, Q.; Yang, J.; Hu, L.; Zhao, H.; Lu, Y. Biotransforming CO2 into valuable chemicals. J. Clean. Prod. 2024, 434, 140185.

12. Fang, S.; Rahaman, M.; Bharti, J.; et al. Photocatalytic CO2 reduction. Nat. Rev. Methods. Primers. 2023, 3, 61.

13. Alkhatib, I. I.; Garlisi, C.; Pagliaro, M.; Al-ali, K.; Palmisano, G. Metal-organic frameworks for photocatalytic CO2 reduction under visible radiation: a review of strategies and applications. Catal. Today. 2020, 340, 209-24.

14. Ye, W.; Guo, X.; Ma, T. A review on electrochemical synthesized copper-based catalysts for electrochemical reduction of CO2 to C2+ products. Chem. Eng. J. 2021, 414, 128825.

15. Birdja, Y. Y.; Pérez-gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy. 2019, 4, 732-45.

16. Liu, X.; Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Building Up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts. J. Am. Chem. Soc. 2019, 141, 9664-72.

17. Cho, J. H.; Lee, C.; Hong, S. H.; et al. Transition metal ion doping on ZIF-8 enhances the electrochemical CO2 reduction reaction. Adv. Mater. 2023, 35, 2208224.

18. Cho, J. H.; Ma, J.; Lee, C.; et al. Crystallographically vacancy-induced MOF nanosheet as rational single-atom support for accelerating CO2 electroreduction to CO. Carbon. Energy. 2024, 6, e510.

19. Nitopi, S.; Bertheussen, E.; Scott, S. B.; et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610-72.

20. Al-rowaili, F. N.; Jamal, A.; Ba, S. M. S.; Rana, A. A review on recent advances for electrochemical reduction of carbon dioxide to methanol using metal-organic framework (MOF) and Non-MOF catalysts: challenges and future prospects. ACS. Sustainable. Chem. Eng. 2018, 6, 15895-914.

21. Wu, J.; Zhou, X. Catalytic conversion of CO2 to value added fuels: current status, challenges, and future directions. Chin. J. Catal. 2016, 37, 999-1015.

22. Kibria, M. G.; Edwards, J. P.; Gabardo, C. M.; et al. Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design. Adv. Mater. 2019, 31, e1807166.

23. Liang, C.; Kim, B.; Yang, S.; et al. High efficiency electrochemical reduction of CO2 beyond the two-electron transfer pathway on grain boundary rich ultra-small SnO2 nanoparticles. J. Mater. Chem. A. 2018, 6, 10313-9.

24. Hussain, M. S.; Ahmed, S.; Irshad, M.; et al. Recent engineering strategies for enhancing C2+ product formation in copper-catalyzed CO2 electroreduction. Nano. Mater. Sci. 2024. DOI: 10.1016/j.nanoms.2024.09.001.

25. Ma, M.; Djanashvili, K.; Smith, W. A. Selective electrochemical reduction of CO2 to CO on CuO-derived Cu nanowires. Phys. Chem. Chem. Phys. 2015, 17, 20861-7.

26. Reske, R.; Mistry, H.; Behafarid, F.; Roldan, C. B.; Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 2014, 136, 6978-86.

27. Kas, R.; Kortlever, R.; Milbrat, A.; Koper, M. T.; Mul, G.; Baltrusaitis, J. Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. Phys. Chem. Chem. Phys. 2014, 16, 12194-201.

28. Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy. Environ. Sci. 2012, 5, 7050-9.

29. Ogura, K.; Oohara, R.; Kudo, Y. Reduction of CO2 to ethylene at three-phase interface effects of electrode substrate and catalytic coating. J. Electrochem. Soc. 2005, 152, D213.

30. Han, H.; Han, T.; Luo, Y.; Mushtaq, M. A.; Jia, Y.; Liu, C. Recent advances in α-Fe2O3-based photocatalysts for CO2 conversion to solar fuels. J. Ind. Eng. Chem. 2023, 128, 81-94.

31. Trogadas, P.; Xu, L.; Coppens, M. O. From biomimicking to bioinspired design of electrocatalysts for CO2 reduction to C1 products. Angew. Chem. Int. Ed. 2024, 63, e202314446.

32. Wang, Y.; Han, P.; Lv, X.; Zhang, L.; Zheng, G. Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule 2018, 2, 2551-82.

33. Qiao, J.; Liu, Y.; Hong, F.; Zhang, J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 2014, 43, 631-75.

34. Shen, H.; Jin, H.; Li, H.; et al. Acidic CO2-to-HCOOH electrolysis with industrial-level current on phase engineered tin sulfide. Nat. Commun. 2023, 14, 2843.

35. Zhao, K.; Quan, X. Carbon-based materials for electrochemical reduction of CO2 to C2+ oxygenates: recent progress and remaining challenges. ACS. Catal. 2021, 11, 2076-97.

36. Sun, Z.; Ma, T.; Tao, H.; Fan, Q.; Han, B. Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 2017, 3, 560-87.

37. Woldu, A. R.; Huang, Z.; Zhao, P.; Hu, L.; Astruc, D. Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts. Coord. Chem. Rev. 2022, 454, 214340.

38. Jiang, K.; Huang, Y.; Zeng, G.; Toma, F. M.; Goddard, W. A.; Bell, A. T. Effects of surface roughness on the electrochemical reduction of CO2 over Cu. ACS. Energy. Lett. 2020, 5, 1206-14.

39. Xiao, C.; Zhang, J. Architectural design for enhanced C2 product selectivity in electrochemical CO2 reduction using Cu-based catalysts: a review. ACS. Nano. 2021, 15, 7975-8000.

40. Cho, J. H.; Ma, J.; Kim, S. Y. Toward high-efficiency photovoltaics-assisted electrochemical and photoelectrochemical CO2 reduction: strategy and challenge. Exploration 2023, 3, 20230001.

41. Rhimi, B.; Zhou, M.; Yan, Z.; Cai, X.; Jiang, Z. Cu-based materials for enhanced C2+ product selectivity in photo-/electro-catalytic CO2 reduction: challenges and prospects. Nano-Micro. Lett. 2024, 16, 64.

42. Li, D.; Zhang, H.; Xiang, H.; et al. How to go beyond C1 products with electrochemical reduction of CO2. Sustainable. Energy. Fuels. 2021, 5, 5893-914.

43. Garza, A. J.; Bell, A. T.; Head-gordon, M. Mechanism of CO2 reduction at copper surfaces: pathways to C2 products. ACS. Catal. 2018, 8, 1490-9.

44. Lim, C. Y. J.; Yilmaz, M.; Arce-Ramos, J. M.; et al. Surface charge as activity descriptors for electrochemical CO2 reduction to multi-carbon products on organic-functionalised Cu. Nat. Commun. 2023, 14, 335.

45. Calle-Vallejo, F.; Koper, M. T. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem. Int. Ed. 2013, 52, 7282-5.

46. Ma, M.; Djanashvili, K.; Smith, W. A. Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angew. Chem. Int. Ed. 2016, 55, 6680-4.

47. Wang, L.; Nitopi, S. A.; Bertheussen, E.; et al. Electrochemical carbon monoxide reduction on polycrystalline copper: effects of potential, pressure, and pH on selectivity toward multicarbon and oxygenated products. ACS. Catal. 2018, 8, 7445-54.

48. Rollier, F. A.; Muravev, V.; Parastaev, A.; et al. Restructuring of Cu-based catalysts during CO electroreduction: evidence for the dominant role of surface defects on the C2+ Product Selectivity. ACS. Catal. 2024, 14, 13246-59.

49. Chang, B.; Pang, H.; Raziq, F. Electrochemical reduction of carbon dioxide to multicarbon (C2+) products: challenges and perspectives. Energy. Environ. Sci. 2023, 16, 4714-58.

50. Zhang, X.; Guo, S.; Gandionco, K. A.; Bond, A. M.; Zhang, J. Electrocatalytic carbon dioxide reduction: from fundamental principles to catalyst design. Mater. Today. Adv. 2020, 7, 100074.

51. Ma, J.; Ahn, S. H.; Kim, S. Y. Integration of earth-abundant cocatalysts for high-performance photoelectrochemical energy conversion. J. Energy. Chem. 2024, 88, 336-55.

52. Meng, Y.; Ding, J.; Liu, Y.; et al. Advancements in amorphous oxides for electrocatalytic carbon dioxide reduction. Mater. Today. Catal. 2024, 7, 100065.

53. Fan, D.; Zhang, S.; Li, Y.; et al. High selective electrocatalytic reduction of carbon dioxide to ethylene enabled by regulating the microenvironment over Cu-Ag nanowires. J. Colloid. Interface. Sci. 2024, 662, 786-95.

54. Li, M.; Hu, Y.; Wu, T.; Sumboja, A.; Geng, D. How to enhance the C2 products selectivity of copper-based catalysts towards electrochemical CO2 reduction? Materials. Today. 2023, 67, 320-43.

55. Yu, H.; Wu, H.; Chow, Y. L.; Wang, J.; Zhang, J. Revolutionizing electrochemical CO2 reduction to deeply reduced products on non-Cu-based electrocatalysts. Energy. Environ. Sci. 2024, 17, 5336-64.

56. Giulimondi, V.; Mitchell, S.; Pérez-Ramírez, J. Challenges and opportunities in engineering the electronic structure of single-atom catalysts. ACS. Catal. 2023, 13, 2981-97.

57. Gu, Z.; Shen, H.; Chen, Z.; et al. Efficient electrocatalytic CO2 reduction to C2+ alcohols at defect-site-rich Cu surface. Joule 2021, 5, 429-40.

58. Xue, L.; Shi, T.; Han, C.; et al. Boosting hydrocarbon conversion via Cu-doping induced oxygen vacancies on CeO2 in CO2 electroreduction. J. Energy. Chem. 2025, 100, 66-76.

59. Fang, M.; Xia, W.; Han, S.; et al. Boosting CO2 electroreduction to multi-carbon products via oxygen-rich vacancies and Ce4+ -O2- -Cu + Structure in Cu/CeO2 for Stabilizing Cu+. ChemCatChem 2024, 16, e202301266.

60. Shen, B.; Jia, T.; Wang, H.; et al. Enhanced electrochemical CO2 reduction for high ethylene selectivity using iodine-doped copper oxide catalysts. J. Alloys. and. Compd. 2024, 980, 173550.

61. Jiang, Y.; Choi, C.; Hong, S.; et al. Enhanced electrochemical CO2 reduction to ethylene over CuO by synergistically tuning oxygen vacancies and metal doping. Cell. Rep. Phys. Sci. 2021, 2, 100356.

62. Bie, Q.; Yin, H.; Wang, Y.; Su, H.; Peng, Y.; Li, J. Electrocatalytic reduction of CO2 with enhanced C2 liquid products activity by the synergistic effect of Cu single atoms and oxygen vacancies. Chin. J. Catal. 2024, 57, 96-104.

63. Feng, X.; Jiang, K.; Fan, S.; Kanan, M. W. Grain-boundary-dependent CO2 electroreduction activity. J. Am. Chem. Soc. 2015, 137, 4606-9.

64. Bi, X.; Zhao, Y.; Yan, Y.; Wang, H.; Wu, M. Grain boundaries assisting the generation of abundant Cu+ for highly selective electroreduction of CO2 to ethanol. Green. Chem. 2024, 26, 5356-64.

65. Chen, Z.; Wang, T.; Liu, B.; et al. Grain-boundary-rich copper for efficient solar-driven electrochemical CO2 reduction to ethylene and ethanol. J. Am. Chem. Soc. 2020, 142, 6878-83.

66. Zhang, Y.; Qi, K.; Lyu, P.; et al. Grain-boundary engineering boosted undercoordinated active sites for scalable conversion of CO2 to ethylene. ACS. Nano. 2024, 18, 17483-91.

67. Ding, J.; Song, Q.; Xia, L. Unconventional grain fragmentation creates high-density boundaries for efficient CO2-to-C2+ electro-conversion at ampere-level current density. Nano. Energy. 2024, 128, 109945.

68. Kong, Y.; Yang, H.; Jia, X.; et al. Constructing favorable microenvironment on copper grain boundaries for CO2 electro-conversion to multicarbon products. Nano. Lett. 2024, 24, 9345-52.

69. Wu, W.; Tong, Y.; Chen, P. Regulation strategy of nanostructured engineering on indium-based materials for electrocatalytic conversion of CO2. Small 2024, 20, 2305562.

70. Zoubir, O.; Atourki, L.; Ait, A. H.; BaQais, A. Current state of copper-based bimetallic materials for electrochemical CO2 reduction: a review. RSC. Adv. 2022, 12, 30056-75.

71. Liu, G.; Zhan, J.; Zhang, Z.; Zhang, L. H.; Yu, F. Recent advances of the confinement effects boosting electrochemical CO2 reduction. Chem. Asian. J. 2023, 18, e202200983.

72. Kim, J. Y.; Hong, D.; Lee, J. C.; et al. Quasi-graphitic carbon shell-induced Cu confinement promotes electrocatalytic CO2 reduction toward C2+ products. Nat. Commun. 2021, 12, 3765.

73. Fan, L.; Geng, Q.; Ma, L.; et al. Evoking C2+ production from electrochemical CO2 reduction by the steric confinement effect of ordered porous Cu2O. Chem. Sci. 2023, 14, 13851-9.

74. Liu, L. X.; Cai, Y.; Du, H.; et al. Enriching the local concentration of CO intermediates on Cu cavities for the electrocatalytic reduction of CO2 to C2+ products. ACS. Appl. Mater. Interfaces. 2023, 15, 16673-9.

75. Pan, Y.; Li, H.; Xiong, J.; et al. Protecting the state of Cu clusters and nanoconfinement engineering over hollow mesoporous carbon spheres for electrocatalytical C-C coupling. Appl. Catal. B. Environ. 2022, 306, 121111.

76. Liu, C.; Zhang, M.; Li, J.; et al. Nanoconfinement engineering over hollow multi-shell structured copper towards efficient electrocatalytical C-C coupling. Angew. Chem. Int. Ed. 2022, 61, e202113498.

77. Wu, M.; Zhu, C.; Mao, J.; et al. Dimensional effect of oxide-derived Cu electrocatalysts to reduce CO2 into multicarbon compounds. Chem. Eng. J. 2024, 499, 156006.

78. Xie, H.; Xie, R.; Zhang, Z.; et al. Achieving highly selective electrochemical CO2 reduction to C2H4 on Cu nanosheets. J. Energy. Chem. 2023, 79, 312-20.

79. Wang, P.; Meng, S.; Zhang, B.; et al. Sub-1 nm Cu2O nanosheets for the electrochemical CO2 reduction and valence state-activity relationship. J. Am. Chem. Soc. 2023, 145, 26133-43.

80. Yang, F.; Yang, T.; Li, J.; et al. Boosting the electroreduction of CO2 to liquid products via nanostructure engineering of Cu2O catalysts. J. Catal. 2024, 432, 115458.

81. Gregorio GL, Burdyny T, Loiudice A, Iyengar P, Smith WA, Buonsanti R. Facet-dependent selectivity of Cu catalysts in electrochemical CO2 reduction at commercially viable current densities. ACS. Catal. 2020, 10, 4854-62.

82. Fu, Y.; Xie, Q.; Wu, L.; Luo, J. Crystal facet effect induced by different pretreatment of Cu2O nanowire electrode for enhanced electrochemical CO2 reduction to C2+ products. Chin. J. Catal. 2022, 43, 1066-73.

83. Dong, Y.; Ma, X.; Jin, Z.; et al. Full-exposed Cu site of Cu2O-(100) driven high ethylene selectivity of carbon dioxide reduction. Appl. Surf. Sci. 2024, 653, 159243.

84. Luo, H.; Li, B.; Ma, J. G.; Cheng, P. Surface modification of nano-Cu2O for controlling CO2 electrochemical reduction to ethylene and syngas. Angew. Chem. Int. Ed. 2022, 61, e202116736.

85. Merino-Garcia, I.; Albo, J.; Irabien, A. Tailoring gas-phase CO2 electroreduction selectivity to hydrocarbons at Cu nanoparticles. Nanotechnology 2018, 29, 014001.

86. Rong, W.; Zou, H.; Zang, W.; et al. Size-dependent activity and selectivity of atomic-level copper nanoclusters during CO/CO2 electroreduction. Angew. Chem. Int. Ed. 2021, 60, 466-72.

87. Nam, D. H.; Bushuyev, O. S.; Li, J.; et al. Metal-organic frameworks mediate Cu coordination for selective CO2 electroreduction. J. Am. Chem. Soc. 2018, 140, 11378-86.

88. Su, X.; Jiang, Z.; Zhou, J.; et al. Complementary operando spectroscopy identification of in-situ generated metastable charge-asymmetry Cu2-CuN3 clusters for CO2 reduction to ethanol. Nat. Commun. 2022, 13, 1322.

89. Tabassum, H.; Yang, X.; Zou, R.; Wu, G. Surface engineering of Cu catalysts for electrochemical reduction of CO2 to value-added multi-carbon products. Chem. Catal. 2022, 2, 1561-93.

90. Fang, M.; Wang, M.; Wang, Z.; et al. Hydrophobic, ultrastable Cuδ+ for Robust CO2 electroreduction to C2 products at ampere-current levels. J. Am. Chem. Soc. 2023, 145, 11323-32.

91. Mu, S.; Li, L.; Zhao, R.; Lu, H.; Dong, H.; Cui, C. Molecular-scale insights into electrochemical reduction of CO2 on hydrophobically modified Cu surfaces. ACS. Appl. Mater. Interfaces. 2021, 13, 47619-28.

92. Xie, M. S.; Xia, B. Y.; Li, Y.; et al. Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy. Environ. Sci. 2016, 9, 1687-95.

93. Wei, X.; Yin, Z.; Lyu, K.; et al. Highly Selective reduction of CO2 to C2+ hydrocarbons at copper/polyaniline interfaces. ACS. Catal. 2020, 10, 4103-11.

94. Ma, L.; Geng, Q.; Fan, L.; et al. Enhanced electroreduction of CO2 to C2+ fuels by the synergetic effect of polyaniline/CuO nanosheets hybrids. Nano. Res. 2023, 16, 9065-72.

95. Wakerley, D.; Lamaison, S.; Ozanam, F.; et al. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat. Mater. 2019, 18, 1222-7.

96. Shi, T.; Liu, D.; Feng, H.; Zhang, Y.; Li, Q. Evolution of triple-phase interface for enhanced electrochemical CO2 reduction. Chem. Eng. J. 2022, 431, 134348.

97. Niu, Z. Z.; Gao, F. Y.; Zhang, X. L.; et al. Hierarchical copper with inherent hydrophobicity mitigates electrode flooding for high-rate CO2 electroreduction to multicarbon products. J. Am. Chem. Soc. 2021, 143, 8011-21.

98. Liu, Z.; Lv, X.; Kong, S.; et al. Interfacial water tuning by intermolecular spacing for stable CO2 electroreduction to C2+ products. Angew. Chem. Int. Ed. 2023, 62, e202309319.

99. Xie, L.; Jiang, Y.; Zhu, W. Cu-based catalyst designs in CO2 electroreduction: precise modulation of reaction intermediates for high-value chemical generation. Chem. Sci. 2023, 14, 13629-60.

100. Xie, G.; Guo, W.; Fang, Z.; et al. Dual-metal sites drive tandem electrocatalytic CO2 to C2+ products. Angew. Chem. Int. Ed. 2024, 63, e202412568.

101. Zhu, C.; Zhang, Z.; Qiao, R.; et al. Selective tandem CO2-to-C2+ alcohol conversion at a single-crystal Au/Cu bimetallic interface. J. Phys. Chem. C. 2023, 127, 3470-7.

102. Zhang, B.; Wang, L.; Li, D.; Li, Z.; Bu, R.; Lu, Y. Tandem strategy for electrochemical CO2 reduction reaction. Chem. Catal. 2022, 2, 3395-429.

103. Zhan, C.; Dattila, F.; Rettenmaier, C.; et al. Key intermediates and Cu active sites for CO2 electroreduction to ethylene and ethanol. Nat. Energy. 2024, 9, 1485-96.

104. Qin, Q.; Suo, H.; Chen, L.; et al. Emerging Cu-Based tandem catalytic systems for CO2 electroreduction to multi-carbon products. Adv. Mater. Inter. 2024, 11, 2301049.

105. Duan, H.; Li, W.; Ran, L.; et al. In-situ electrochemical interface of Cu@Ag/C towards the ethylene electrosynthesis with adequate *CO supply. J. Energy. Chem. 2024, 99, 292-9.

106. Jeon, Y. E.; Ko, Y. N.; Kim, J.; et al. Selective production of ethylene from CO2 over CuAg tandem electrocatalysts. J. Ind. Eng. Chem. 2022, 116, 191-8.

107. Liu, H.; Sun, C.; Wu, M.; et al. High-performance carbon dioxide reduction to multi-carbon products on EDTA-modified Cu-Ag tandem catalyst. J. Catal. 2024, 429, 115227.

108. Luan, P.; Dong, X.; Liu, L.; et al. Selective electrosynthesis of ethanol via asymmetric C-C coupling in tandem CO2 reduction. ACS. Catal. 2024, 14, 8776-85.

109. Huang, J.; Mensi, M.; Oveisi, E.; Mantella, V.; Buonsanti, R. Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag-Cu nanodimers. J. Am. Chem. Soc. 2019, 141, 2490-9.

110. Ma, Y.; Yu, J.; Sun, M.; et al. Confined growth of silver-copper janus nanostructures with {100} facets for highly selective tandem electrocatalytic carbon dioxide reduction. Adv. Mater. 2022, 34, e2110607.

111. Wei, C.; Yang, Y.; Ma, H.; et al. Nanoscale management of CO transport in CO2 electroreduction: boosting faradaic efficiency to multicarbon products via nanostructured tandem electrocatalysts. Adv. Funct. Mater. 2023, 33, 2214992.

112. Morales-guio, C. G.; Cave, E. R.; Nitopi, S. A.; et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 2018, 1, 764-71.

113. Wang, S.; Jung, H. D.; Choi, H.; Kim, J.; Back, S.; Oh, J. Delicate control of a gold-copper oxide tandem structure enables the efficient production of high-value chemicals by electrochemical carbon dioxide reduction. Nano. Energy. 2024, 130, 110176.

114. Cao, X.; Cao, G.; Li, M.; et al. Enhanced ethylene formation from carbon dioxide reduction through sequential catalysis on Au decorated cubic Cu2O electrocatalyst. Eur. J. Inorg. Chem. 2021, 2021, 2353-64.

115. Zhu, C.; Zhou, L.; Zhang, Z.; et al. Dynamic restructuring of epitaxial Au-Cu biphasic interface for tandem CO2-to-C2+ alcohol conversion. Chem 2022, 8, 3288-301.

116. Wei, Z.; Yue, S.; Gao, S.; Cao, M.; Cao, R. Synergetic effects of gold-doped copper nanowires with low Au content for enhanced electrocatalytic CO2 reduction to multicarbon products. Nano. Res. 2023, 16, 7777-83.

117. Zheng, Y.; Zhang, J.; Ma, Z.; et al. Seeded growth of gold-copper janus nanostructures as a tandem catalyst for efficient electroreduction of CO2 to C2+ products. Small 2022, 18, e2201695.

118. Huang, J.; Zhang, X.; Yang, J.; Yu, J.; Chen, Q.; Peng, L. Recent progress on copper-based bimetallic heterojunction catalysts for CO2 electrocatalysis: unlocking the mystery of product selectivity. Adv. Sci. 2024, 11, 2309865.

119. Li, Y.; Sun, Y.; Yu, M. Strategies for improving product selectivity in electrocatalytic carbon dioxide reduction using copper-based catalysts. Adv. Funct. Mater. 2024, 34, 2410186.

120. Wan, L.; Zhang, X.; Cheng, J.; et al. Bimetallic Cu-Zn catalysts for electrochemical CO2 reduction: phase-separated versus core-shell distribution. ACS. Catal. 2022, 12, 2741-8.

121. Liu, J.; Yu, K.; Qiao, Z.; Zhu, Q.; Zhang, H.; Jiang, J. Integration of cobalt phthalocyanine, acetylene black and Cu2O nanocubes for efficient electroreduction of CO2 to C2H4. ChemSusChem 2023, 16, e202300601.

122. Kong, X.; Zhao, J.; Ke, J.; et al. Understanding the effect of *CO coverage on C-C coupling toward CO2 electroreduction. Nano. Lett. 2022, 22, 3801-8.

123. Min, S.; Xu, X.; He, J.; Sun, M.; Lin, W.; Kang, L. Construction of cobalt porphyrin-modified Cu2O nanowire array as a tandem electrocatalyst for enhanced CO2 reduction to C2 products. Small 2024, 20, 2400592.

124. Chen, Y.; Ji, S.; Chen, C.; Peng, Q.; Wang, D.; Li, Y. Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2018, 2, 1242-64.

125. Zhang, L.; Wang, K.; Zhu, G.; Shi, J.; Zhu, H. Assembly of colloidal Cu nanoparticles and Ni-N-C nanocarbons to electrochemically boost cascade production of ethylene from CO2 reduction. J. Mater. Sci. 2023, 58, 17200-10.

126. Zhang, Y.; Li, P.; Zhao, C.; et al. Multicarbons generation factory: CuO/Ni single atoms tandem catalyst for boosting the productivity of CO2 electrocatalysis. Sci. Bull. 2022, 67, 1679-87.

127. Liu, M.; Wang, Q.; Luo, T.; et al. Potential alignment in tandem catalysts enhances CO2-to-C2H4 conversion efficiencies. J. Am. Chem. Soc. 2024, 146, 468-75.

128. Meng, D. L.; Zhang, M. D.; Si, D. H.; et al. Highly selective tandem electroreduction of CO2 to ethylene over atomically isolated nickel-nitrogen site/copper nanoparticle catalysts. Angew. Chem. Int. Ed. 2021, 60, 25689-96.

129. Chen, B.; Gong, L.; Li, N.; et al. Tandem catalysis for enhanced CO2 to ethylene conversion in neutral media. Adv. Funct. Mater. 2024, 34, 2310029.

130. Paris, A. R.; Bocarsly, A. B. Ni-Al films on glassy carbon electrodes generate an array of oxygenated organics from CO2. ACS. Catal. 2017, 7, 6815-20.

131. Torelli, D. A.; Francis, S. A.; Crompton, J. C.; et al. Nickel-gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at low overpotentials. ACS. Catal. 2016, 6, 2100-4.

132. Ding, J.; Bin, Y. H.; Ma, X.; et al. A tin-based tandem electrocatalyst for CO2 reduction to ethanol with 80% selectivity. Nat. Energy. 2023, 8, 1386-94.

133. She, X.; Wang, Y.; Xu, H.; Chi, E. T. S.; Ping, L. S. Challenges and opportunities in electrocatalytic CO2 reduction to chemicals and fuels. Angew. Chem. Int. Ed. 2022, 61, e202211396.

134. Ewis, D.; Arsalan, M.; Khaled, M.; et al. Electrochemical reduction of CO2 into formate/formic acid: A review of cell design and operation. Sep. Purif. Technol. 2023, 316, 123811.

135. Harthi A, Abri MA, Younus HA, Hajri RA. Criteria and cutting-edge catalysts for CO2 electrochemical reduction at the industrial scale. J. CO2. Util. 2024, 83, 102819.

136. Sajna, M.; Zavahir, S.; Popelka, A.; et al. Electrochemical system design for CO2 conversion: a comprehensive review. J. Environ. Chem. Eng. 2023, 11, 110467.

137. Kim, J.; Ahn, S. H. Recent progress in carbon dioxide electrolyzer using gas diffusion electrode. Ceramist 2021, 24, 96-108.

138. Luo, Y.; Zhang, K.; Li, Y.; Wang, Y. Valorizing carbon dioxide via electrochemical reduction on gas-diffusion electrodes. InfoMat 2021, 3, 1313-32.

139. Zhang, F. Y.; Sheng, T.; Tian, N.; et al. Cu overlayers on tetrahexahedral Pd nanocrystals with high-index facets for CO2 electroreduction to alcohols. Chem. Commun. 2017, 53, 8085-8.

140. Salvatore, D.; Berlinguette, C. P. Voltage matters when reducing CO2 in an electrochemical flow cell. ACS. Energy. Lett. 2020, 5, 215-20.

141. Chen, J.; Qiu, H.; Zhao, Y.; et al. Selective and stable CO2 electroreduction at high rates via control of local H2O/CO2 ratio. Nat. Commun. 2024, 15, 5893.

142. Lee, G.; Rasouli, A. S.; Lee, B.; et al. CO2 electroreduction to multicarbon products from carbonate capture liquid. Joule 2023, 7, 1277-88.

143. Ni, W.; Chen, H.; Tang, N.; et al. High-purity ethylene production via indirect carbon dioxide electrochemical reduction. Nat. Commun. 2024, 15, 6078.

144. Weekes, D. M.; Salvatore, D. A.; Reyes, A.; Huang, A.; Berlinguette, C. P. Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 2018, 51, 910-8.

145. Sato, S.; Sekizawa, K.; Shirai, S.; Sakamoto, N.; Morikawa, T. Enhanced performance of molecular electrocatalysts for CO2 reduction in a flow cell following K+ addition. Sci. Adv. 2023, 9, eadh9986.

146. Ampelli, C.; Tavella, F.; Giusi, D.; Ronsisvalle, A. M.; Perathoner, S.; Centi, G. Electrode and cell design for CO2 reduction: a viewpoint. Catal. Today. 2023, 421, 114217.

147. Tufa, R. A.; Chanda, D.; Ma, M.; et al. Towards highly efficient electrochemical CO2 reduction: cell designs, membranes and electrocatalysts. Appl. Energy. 2020, 277, 115557.

148. Xing, Z.; Hu, L.; Ripatti, D. S.; Hu, X.; Feng, X. Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment. Nat. Commun. 2021, 12, 136.

149. Yang, K.; Kas, R.; Smith, W. A.; Burdyny, T. Role of the carbon-based gas diffusion layer on flooding in a gas diffusion electrode cell for electrochemical CO2 reduction. ACS. Energy. Lett. 2021, 6, 33-40.

150. Jiang, H.; Luo, R.; Li, Y.; Chen, W. Recent advances in solid-liquid-gas three-phase interfaces in electrocatalysis for energy conversion and storage. EcoMat 2022, 4, e12199.

151. Wang, J.; Ji, Q.; Zang, H.; et al. Atomically dispersed ga synergy lewis acid-base pairs in F-doped mesoporous Cu2O for efficient eletroreduction of CO2 to C2+ products. Adv. Funct. Mater. 2024, 34, 2404274.

152. Yang, C.; Wang, R.; Yu, C.; et al. Engineering stable Cu+-Cu0 sites and oxygen defects in boron-doped copper oxide for electrocatalytic reduction of CO2 to C2+ products. Chem. Eng. J. 2024, 484, 149710.

153. Chen, Q.; Wang, X.; Zhou, Y.; et al. Electrocatalytic CO2 reduction to C2+ products in flow cells. Adv. Mater. 2024, 36, 2303902.

154. Yu, J.; Xiao, J.; Ma, Y.; et al. Acidic conditions for efficient carbon dioxide electroreduction in flow and MEA cells. Chem. Catal. 2023, 3, 100670.

155. Wang, B.; Song, L.; Peng, C.; Lv, X.; Zheng, G. Pd-induced polarized Cu0-Cu+ sites for electrocatalytic CO2-to-C2+ conversion in acidic medium. J. Colloid. Interface. Sci. 2024, 671, 184-91.

156. Wang, Z.; Zhou, Y.; Qiu, P.; et al. Advanced catalyst design and reactor configuration upgrade in electrochemical carbon dioxide conversion. Adv. Mater. 2023, 35, 2303052.

157. Choi, W.; Park, S.; Jung, W.; Won, D. H.; Na, J.; Hwang, Y. J. Origin of hydrogen incorporated into ethylene during electrochemical CO2 reduction in membrane electrode assembly. ACS. Energy. Lett. 2022, 7, 939-45.

158. Rabiee, H.; Ma, B.; Yang, Y.; et al. Advances and challenges of carbon-free gas-diffusion electrodes (GDEs) for electrochemical CO2 reduction. Adv. Funct. Mater. 2025, 35, 2411195.

159. Ge, L.; Rabiee, H.; Li, M.; et al. Electrochemical CO2 reduction in membrane-electrode assemblies. Chem 2022, 8, 663-92.

160. Gawel, A.; Jaster, T.; Siegmund, D.; et al. Electrochemical CO2 reduction - the macroscopic world of electrode design, reactor concepts & economic aspects. iScience 2022, 25, 104011.

161. Lee, T.; Lee, Y.; Eo, J.; Nam, D. H. Acidic CO2 electroreduction for high CO2 utilization: catalysts, electrodes, and electrolyzers. Nanoscale 2024, 16, 2235-49.

162. Alinejad, S.; Quinson, J.; Li, Y.; et al. Optimizing the use of a gas diffusion electrode setup for CO2 electrolysis imitating a zero-gap MEA design. J. Catal. 2024, 429, 115209.

163. Larrea, C.; Torres, D.; Avilés-moreno, J. R.; Ocón, P. Multi-parameter study of CO2 electrochemical reduction from concentrated bicarbonate feed. J. CO2. Util. 2022, 57, 101878.

164. Bui, J. C.; Kim, C.; King, A. J.; et al. Engineering catalyst-electrolyte microenvironments to optimize the activity and selectivity for the electrochemical reduction of CO2 on Cu and Ag. Acc. Chem. Res. 2022, 55, 484-94.

165. Lai, W.; Qiao, Y.; Zhang, J.; Lin, Z.; Huang, H. Design strategies for markedly enhancing energy efficiency in the electrocatalytic CO2 reduction reaction. Energy. Environ. Sci. 2022, 15, 3603-29.

166. Ozden, A.; Li, F.; Garcı́a, A. F. P.; et al. High-rate and efficient ethylene electrosynthesis using a catalyst/promoter/transport layer. ACS. Energy. Lett. 2020, 5, 2811-8.

167. He, R.; Xu, N.; Hasan, I. M. U.; et al. Advances in electrolyzer design and development for electrochemical CO2 reduction. EcoMat 2023, 5, e12346.

168. Xia, C.; Zhu, P.; Jiang, Q.; et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy. 2019, 4, 776-85.

169. Gong, Y.; He, T. Gaining deep understanding of electrochemical CO2RR with in situ/operando techniques. Small. Methods. 2023, 7, 2300702.

170. Delmo, E. P.; Wang, Y.; Song, Y.; et al. In situ infrared spectroscopic evidence of enhanced electrochemical CO2 reduction and C-C coupling on oxide-derived copper. J. Am. Chem. Soc. 2024, 146, 1935-45.

171. Xu, H.; Fan, Z.; Zhu, S.; Shao, M. A minireview on selected applications of in situ infrared spectroscopy in studying CO2 electrochemical reduction reaction. Curr. Opin. Electrochem. 2023, 41, 101363.

172. Chen, L.; Zhang, C.; Jiao, X. Recent advances of in situ insights into CO2 reduction toward fuels. ChemCatChem 2025, 17, e202401388.

173. Jin, L.; Seifitokaldani, A. In situ spectroscopic methods for electrocatalytic CO2 reduction. Catalysts 2020, 10, 481.

174. Katayama, Y.; Nattino, F.; Giordano, L.; et al. An in situ surface-enhanced infrared absorption spectroscopy study of electrochemical CO2 reduction: selectivity dependence on surface C-bound and O-bound reaction intermediates. J. Phys. Chem. C. 2019, 123, 5951-63.

175. Dutta, A.; Kuzume, A.; Rahaman, M.; Vesztergom, S.; Broekmann, P. Monitoring the chemical state of catalysts for CO2 electroreduction: an in operando study. ACS. Catal. 2015, 5, 7498-502.

176. Zhu, P.; Qin, Y.; Cai, X.; et al. Understanding oxidation state of Cu-based catalysts for electrocatalytic CO2 reduction. J. Mater. Sci. Technol. 2025, 218, 1-24.

177. Firet, N. J.; Smith, W. A. Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy. ACS. Catal. 2017, 7, 606-12.

178. Chen, M.; Liu, D.; Qiao, L.; et al. In-situ/operando raman techniques for in-depth understanding on electrocatalysis. Chem. Eng. J. 2023, 461, 141939.

179. Celorrio, V.; Leach, A. S.; Huang, H.; et al. Relationship between Mn oxidation state changes and oxygen reduction activity in (La,Ca)MnO3 as probed by in situ XAS and XES. ACS. Catal. 2021, 11, 6431-9.

180. Song, X.; Xu, L.; Sun, X.; Han, B. In situ/operando characterization techniques for electrochemical CO2 reduction. Sci. China. Chem. 2023, 66, 315-23.

181. You, S.; Xiao, J.; Liang, S.; et al. Doping engineering of Cu-based catalysts for electrocatalytic CO2 reduction to multi-carbon products. Energy. Environ. Sci. 2024, 17, 5795-818.

182. Popović, S.; Smiljanić, M.; Jovanovič, P.; Vavra, J.; Buonsanti, R.; Hodnik, N. Stability and degradation mechanisms of copper-based catalysts for electrochemical CO2 reduction. Angew. Chem. Int. Ed. 2020, 59, 14736-46.

183. He, Q.; Ning, J.; Chen, H.; et al. Achievements, challenges, and perspectives in the design of polymer binders for advanced lithium-ion batteries. Chem. Soc. Rev. 2024, 53, 7091-157.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/