REFERENCES

1. Frith, J. T.; Lacey, M. J.; Ulissi, U. A non-academic perspective on the future of lithium-based batteries. Nat. Commun. 2023, 14, 420.

2. Blomgren, G. E. The development and future of lithium ion batteries. J. Electrochem. Soc. 2017, 164, A5019-25.

3. Jung, H.; Silva, R.; Han, M. Scaling trends of electric vehicle performance: driving range, fuel economy, peak power output, and temperature effect. World. Electr. Veh. J. 2018, 9, 46.

4. Li, H. Practical evaluation of Li-ion batteries. Joule 2019, 3, 911-4.

5. Cao, W.; Zhang, J.; Li, H. Batteries with high theoretical energy densities. Energy. Storage. Mater. 2020, 26, 46-55.

6. USCAR. Development of advanced high-performance batteries for electric vehicle (EV) applications. Available from: https://uscar.org/publications/. [Last accessed on 28 Feb 2025].

7. Kong, L.; Li, C.; Jiang, J.; Pecht, M. G. Li-ion battery fire hazards and safety strategies. Energies 2018, 11, 2191.

8. Chen, Y.; Kang, Y.; Zhao, Y.; et al. A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards. J. Energy. Chem. 2021, 59, 83-99.

9. Liang, Y.; Zhao, C.; Yuan, H.; et al. A review of rechargeable batteries for portable electronic devices. InfoMat 2019, 1, 6-32.

10. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303-418.

11. Hess, S.; Wohlfahrt-mehrens, M.; Wachtler, M. Flammability of Li-ion battery electrolytes: flash point and self-extinguishing time measurements. J. Electrochem. Soc. 2015, 162, A3084-97.

12. Kamaya, N.; Homma, K.; Yamakawa, Y.; et al. A lithium superionic conductor. Nat. Mater. 2011, 10, 682-6.

13. Kato, Y.; Hori, S.; Saito, T.; et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy. 2016, 1, 16030.

14. Swiderska-mocek, A.; Jakobczyk, P.; Rudnicka, E.; Lewandowski, A. Flammability parameters of lithium-ion battery electrolytes. J. Mol. Liq. 2020, 318, 113986.

15. Stallworth, P.; Fontanella, J.; Wintersgill, M.; et al. NMR, DSC and high pressure electrical conductivity studies of liquid and hybrid electrolytes. J. Power. Sources. 1999, 81-82, 739-47.

16. Cao, D.; Sun, X.; Li, Q.; Natan, A.; Xiang, P.; Zhu, H. Lithium dendrite in all-solid-state batteries: growth mechanisms, suppression strategies, and characterizations. Matter 2020, 3, 57-94.

17. Sastre, J.; Futscher, M. H.; Pompizi, L.; et al. Blocking lithium dendrite growth in solid-state batteries with an ultrathin amorphous Li-La-Zr-O solid electrolyte. Commun. Mater. 2021, 2, 177.

18. Jung, K.; Shin, H.; Park, M.; Lee, J. Solid-state lithium batteries: bipolar design, fabrication, and electrochemistry. ChemElectroChem 2019, 6, 3842-59.

19. Tan, D. H.; Meng, Y. S.; Jang, J. Scaling up high-energy-density sulfidic solid-state batteries: a lab-to-pilot perspective. Joule 2022, 6, 1755-69.

20. Li, Y.; Song, S.; Kim, H.; et al. A lithium superionic conductor for millimeter-thick battery electrode. Science 2023, 381, 50-3.

21. Ohno, S.; Bernges, T.; Buchheim, J.; et al. How certain are the reported Ionic conductivities of thiophosphate-based solid electrolytes? ACS. Energy. Lett. 2020, 5, 910-5.

22. Murugan, R.; Thangadurai, V.; Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 2007, 46, 7778-81.

23. Deiseroth, H. J.; Kong, S. T.; Eckert, H.; et al. Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew. Chem. Int. Ed. 2008, 47, 755-8.

24. Zhou, L.; Assoud, A.; Zhang, Q.; Wu, X.; Nazar, L. F. New family of argyrodite thioantimonate lithium superionic conductors. J. Am. Chem. Soc. 2019, 141, 19002-13.

25. Huang, W.; Matsui, N.; Hori, S.; et al. Anomalously high ionic conductivity of Li2SiS3-type conductors. J. Am. Chem. Soc. 2022, 144, 4989-94.

26. Liu, Z.; Fu, W.; Payzant, E. A.; et al. Anomalous high ionic conductivity of nanoporous β-Li3PS4. J. Am. Chem. Soc. 2013, 135, 975-8.

27. Homma, K.; Yonemura, M.; Kobayashi, T.; Nagao, M.; Hirayama, M.; Kanno, R. Crystal structure and phase transitions of the lithium ionic conductor Li3PS4. Solid. State. Ionics. 2011, 182, 53-8.

28. Lee, Y.; Jeong, J.; Lee, H. J.; et al. Lithium argyrodite sulfide electrolytes with high ionic conductivity and air stability for all-solid-state Li-ion batteries. ACS. Energy. Lett. 2022, 7, 171-9.

29. Sakuda, A.; Hayashi, A.; Tatsumisago, M. Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery. Sci. Rep. 2013, 3, 2261.

30. Reddy, M. V.; Julien, C. M.; Mauger, A.; Zaghib, K. Sulfide and oxide inorganic solid electrolytes for all-solid-state Li batteries: a review. Nanomaterials 2020, 10, 1606.

31. Kotobuki, M.; Munakata, H.; Kanamura, K.; Sato, Y.; Yoshida, T. Compatibility of Li7La3Zr2O12 solid electrolyte to all-solid-state battery using Li metal anode. J. Electrochem. Soc. 2010, 157, A1076.

32. Kim, K. H.; Iriyama, Y.; Yamamoto, K.; et al. Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery. J. Power. Sources. 2011, 196, 764-7.

33. Kwak, H.; Kim, J. S.; Han, D.; et al. Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries. Nat. Commun. 2023, 14, 2459.

34. Seino, Y.; Ota, T.; Takada, K.; Hayashi, A.; Tatsumisago, M. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy. Environ. Sci. 2014, 7, 627-31.

35. Kwak, H.; Han, D.; Lyoo, J.; et al. New cost-effective halide solid electrolytes for all-solid-state batteries: mechanochemically prepared Fe3+-substituted Li2ZrCl6. Adv. Energy. Mater. 2021, 11, 2003190.

36. Kraft, M. A.; Culver, S. P.; Calderon, M.; et al. Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I). J. Am. Chem. Soc. 2017, 139, 10909-18.

37. Bron, P.; Johansson, S.; Zick, K.; Schmedt, G. J.; Dehnen, S.; Roling, B. Li10SnP2S12: an affordable lithium superionic conductor. J. Am. Chem. Soc. 2013, 135, 15694-7.

38. Takada, K.; Aotani, N.; Kondo, S. Electrochemical behaviors of Li+ ion conductor, Li3PO4-Li2S-SiS2. J. Power. Sources. 1993, 43, 135-41.

39. Basu, B.; Maiti, H. S.; Paul, A. Lithium ion conductivity in the system Li4SiO4-Li3VO4. Trans. the. Indian. Ceram. Soc. 1985, 44, 97-100.

40. Lim, H.; Kim, S.; Kim, J.; Kim, Y.; Kim, S. Structure of Li5AlS4 and comparison with other lithium-containing metal sulfides. J. Solid. State. Chem. 2018, 257, 19-25.

41. Roh, J.; Kim, H.; Lee, H.; et al. Unraveling polymorphic crystal structures of Li4SiS4 for all-solid-state batteries: enhanced ionic conductivity via aliovalent sb substitution. Chem. Mater. 2024, 36, 6973-84.

42. Kimura, T.; Hotehama, C.; Sakuda, A.; Tatsumisago, M.; Hayashi, A. Structures and conductivities of stable and metastable Li5GaS4 solid electrolytes. RSC. Adv. 2021, 11, 25211-6.

43. Murayama, M.; Kanno, R.; Kawamoto, Y.; Kamiyama, T. Structure of the thio-LISICON, Li4GeS4. Solid. State. Ionics. 2002, 154-155, 789-94.

44. Kaib, T.; Haddadpour, S.; Kapitein, M.; et al. New lithium chalcogenidotetrelates, LiChT: synthesis and characterization of the Li+-conducting tetralithium ortho- sulfidostannate Li4SnS4. Chem. Mater. 2012, 24, 2211-9.

45. Kimura, T.; Kato, A.; Hotehama, C.; Sakuda, A.; Hayashi, A.; Tatsumisago, M. Preparation and characterization of lithium ion conductive Li3SbS4 glass and glass-ceramic electrolytes. Solid. State. Ionics. 2019, 333, 45-9.

46. Ahn, B. T.; Huggins, R. A. Synthesis and lithium conductivities of Li2SiS3 and Li4SiS4. Mater. Res. Bull. 1989, 24, 889-97.

47. Menetrier, M.; Hojjaji, A.; Estournes, C.; Levasseur, A. Ionic conduction in the B2S3-Li2S glass system. Solid. State. Ionics. 1991, 48, 325-30.

48. Hayashi, A.; Fukuda, T.; Hama, S.; et al. Lithium ion conducting glasses and glass-ceramics in the systems Li2S-MxSy (M=Al, Si and P) prepared by mechanical milling. J. Ceram. Soc. Jpn. 2004, S695-9.

49. Souquet, J.; Robinel, E.; Barrau, B.; Ribes, M. Glass formation and ionic conduction in the M2S GeS2 (M = Li, Na, Ag) systems. Solid. State. Ionics. 1981, 3-4, 317-21.

50. Zhang, J.; Gao, C.; He, C.; et al. Effects of different glass formers on Li2S-P2S5-MS2 (M = Si, Ge, Sn) chalcogenide solid-state electrolytes. J. Am. Ceram. Soc. 2023, 106, 354-64.

51. Nagamedianova, Z.; Sánchez, E. Preparation and thermal properties of novel Li2S-Sb2S3 glassy system. J. Non-Cryst. Solids. 2002, 311, 1-9.

52. Souquet, J. L. Ionic transport in amorphous solid electrolytes. Annu. Rev. Mater. Sci. 1981, 11, 211-31.

53. Minami, K.; Hayashi, A.; Tatsumisago, M. Crystallization process for superionic Li7P3S11 glass-ceramic electrolytes: superionic Li7P3S11 glass-ceramic electrolytes. J. Am. Ceram. Soc. 2011, 94, 1779-83.

54. Zhou, L.; Minafra, N.; Zeier, W. G.; Nazar, L. F. Innovative approaches to Li-argyrodite solid electrolytes for all-solid-state lithium batteries. Acc. Chem. Res. 2021, 54, 2717-28.

55. Wang, Y.; Richards, W. D.; Ong, S. P.; et al. Design principles for solid-state lithium superionic conductors. Nat. Mater. 2015, 14, 1026-31.

56. Tilley, R. J. D. Defects in solids. John Wiley & Sons; 2008. p. 1-552.

57. Zhang, Q.; Cao, D.; Ma, Y.; Natan, A.; Aurora, P.; Zhu, H. Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries. Adv. Mater. 2019, 31, 1901131.

58. Ohno, S.; Banik, A.; Dewald, G. F.; et al. Materials design of ionic conductors for solid state batteries. Prog. Energy. 2020, 2, 022001.

59. Tuller, H. L. Ceramic materials for electronics. 3th ed. Boca Raton: CRC Press; 2004. p. 692. Available from: https://doi.org/10.1201/9781315273242. [Last accessed on 28 Feb 2025].

60. Wang, C.; Xu, B. B.; Zhang, X.; et al. Ion hopping: design principles for strategies to improve ionic conductivity for inorganic solid electrolytes. Small 2022, 18, 2107064.

61. Zhang, Z.; Kennedy, J. Synthesis and characterization of the B2S3 Li2S, the P2S5 Li2S and the B2S3 P2S5 Li2S glass systems. Solid. State. Ionics. 1990, 38, 217-24.

62. Dietrich, C.; Weber, D. A.; Sedlmaier, S. J.; et al. Lithium ion conductivity in Li2S-P2S5 glasses - building units and local structure evolution during the crystallization of superionic conductors Li3PS4, Li7P3S11 and Li4P2S7. J. Mater. Chem. A. 2017, 5, 18111-9.

63. Mercier, R.; Malugani, J.; Fahys, B.; Robert, G. Superionic conduction in Li2S-P2S5-LiI- glasses. Solid. State. Ionics. 1981, 5, 663-6.

64. Yamauchi, A.; Sakuda, A.; Hayashi, A.; Tatsumisago, M. Preparation and ionic conductivities of (100 - x)(0.75Li2S·0.25P2S5xLiBH4 glass electrolytes. J. Power. Sources. 2013, 244, 707-10.

65. Park, K. H.; Oh, D. Y.; Choi, Y. E.; et al. Solution-processable glass LiI-Li4SnS4 superionic conductors for all-solid-state Li-ion batteries. Adv. Mater. 2016, 28, 1874-83.

66. Shao, Y.; Gao, C.; He, C.; et al. Ultra-long cycling life Li2S-P2S5-B2S3 solid electrolyte via LiI doping. Ceram. Int. 2024, 50, 31032-9.

67. Kennedy, J.; Sahami, S.; Shea, S.; Zhang, Z. Preparation and conductivity measurements of SiS2 Li2S glasses doped with LiBr and LiCl. Solid. State. Ionics. 1986, 18-19, 368-71.

68. Hao, X.; Quirk, J. A.; Zhao, F.; et al. Regulating ion diffusion and stability in amorphous thiosilicate‐based solid electrolytes through edge‐sharing local structures. Adv. Energy. Mater. 2024, 14, 2304556.

69. Kimura, T.; Inaoka, T.; Izawa, R.; et al. Stabilizing high-temperature α-Li3PS4 by rapidly heating the glass. J. Am. Chem. Soc. 2023, 145, 14466-74.

70. Hori, S.; Suzuki, K.; Hirayama, M.; et al. Synthesis, structure, and ionic conductivity of solid solution, Li10+δM1+δP2-δS12 (M = Si, Sn). Faraday. Discuss. 2014, 176, 83-94.

71. Roh, J.; Do, N.; Manjón-Sanz, A.; Hong, S. T. Li2GeS3: lithium ionic conductor with an unprecedented structural type. Inorg. Chem. 2023, 62, 15856-63.

72. Taeahn, B.; Huggins, R. Phase behavior and conductivity of Li2SiS3 composition. Solid. State. Ionics. 1991, 46, 237-42.

73. Brant, J. A.; Massi, D. M.; Holzwarth, N. A. W.; et al. Fast lithium ion conduction in Li2SnS3: synthesis, physicochemical characterization, and electronic structure. Chem. Mater. 2015, 27, 189-96.

74. Kanno, R.; Hata, T.; Kawamoto, Y.; Irie, M. Synthesis of a new lithium ionic conductor, thio-LISICON-lithium germanium sulfide system. Solid. State. Ionics. 2000, 130, 97-104.

75. Tatsumisago, M.; Mizuno, F.; Hayashi, A. All-solid-state lithium secondary batteries using sulfide-based glass-ceramic electrolytes. J. Power. Sources. 2006, 159, 193-9.

76. Rao, R. P.; Adams, S. Studies of lithium argyrodite solid electrolytes for all-solid-state batteries. Physica. Status. Solidi. (a). 2011, 208, 1804-7.

77. Adeli, P.; Bazak, J. D.; Park, K. H.; et al. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. Angew. Chem. Int. Ed. 2019, 58, 8681-6.

78. Wang, P.; Liu, H.; Patel, S.; et al. Fast ion conduction and its origin in Li6-xPS5-xBr1+x. Chem. Mater. 2020, 32, 3833-40.

79. Hogrefe, K.; Minafra, N.; Hanghofer, I.; Banik, A.; Zeier, W. G.; Wilkening, H. M. R. Opening diffusion pathways through site disorder: the interplay of local structure and ion dynamics in the solid electrolyte Li6+xP1-xGexS5I as probed by neutron diffraction and NMR. J. Am. Chem. Soc. 2022, 144, 1795-812.

80. Warburg, E. Ueber die electrolyse des festen glases. Ann. Phys. 1884, 257, 622-46.

81. Bih, L. Electronic and ionic conductivity of glasses inside the Li2O-MoO3-P2O5 system. Solid. State. Ionics. , 132, 71-85.

82. Tatsumisago, M.; Yoneda, K.; Machida, N.; Hinami, T. Ionic conductivity of rapidly quenched glasses with high concentration of lithium ions. J. Non-Cryst. Solids. 1987, 95-96, 857-64.

83. Rogez, J.; Knauth, P.; Garnier, A.; Ghobarkar, H.; Schäf, O. Determination of the crystallization enthalpies of lithium ion conducting alumino-silicate glasses. J. Non-Cryst. Solids. 2000, 262, 177-82.

84. Ohara, K.; Mitsui, A.; Mori, M.; et al. Structural and electronic features of binary Li2S-P2S5 glasses. Sci. Rep. 2016, 6, 21302.

85. Morimoto, H.; Yamashita, H.; Tatsumisago, M.; Minami, T. Mechanochemical synthesis of new amorphous materials of 60Li2S·40SiS2 with high lithium ion conductivity. J. Am. Ceram. Soc. 1999, 82, 1352-4.

86. Jiusti, J.; Zanotto, E. D.; Feller, S. A.; et al. Effect of network formers and modifiers on the crystallization resistance of oxide glasses. J. Non-Cryst. Solids. 2020, 550, 120359.

87. Lee, B.; Jun, K.; Ouyang, B.; Ceder, G. Weak correlation between the polyanion environment and ionic conductivity in amorphous Li-P-S superionic conductors. Chem. Mater. 2023, 35, 891-9.

88. Hayashi, A.; Hama, S.; Minami, T.; Tatsumisago, M. Formation of superionic crystals from mechanically milled Li2S-P2S5 glasses. Electrochem. Commun. 2003, 5, 111-4.

89. Dietrich, C.; Weber, D. A.; Culver, S.; et al. Synthesis, structural characterization, and lithium ion conductivity of the lithium thiophosphate Li2P2S6. Inorg. Chem. 2017, 56, 6681-7.

90. Yamane, H.; Shibata, M.; Shimane, Y.; et al. Crystal structure of a superionic conductor, Li7P3S11. Solid. State. Ionics. 2007, 178, 1163-7.

91. Kong, S. T.; Gün, O.; Koch, B.; Deiseroth, H. J.; Eckert, H.; Reiner, C. Structural characterisation of the Li argyrodites Li7PS6 and Li7PSe6 and their solid solutions: quantification of site preferences by MAS-NMR spectroscopy. Chemistry 2010, 16, 5138-47.

92. Neuberger, S.; Culver, S. P.; Eckert, H.; Zeier, W. G.; Schmedt, A. G. J. Refinement of the crystal structure of Li4P2S6 using NMR crystallography. Dalton. Trans. 2018, 47, 11691-5.

93. Dietrich, C.; Sadowski, M.; Sicolo, S.; et al. Local structural investigations, defect formation, and ionic conductivity of the lithium ionic conductor Li4P2S6. Chem. Mater. 2016, 28, 8764-73.

94. Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. High lithium ion conducting glass-ceramics in the system Li2S-P2S5. Solid. State. Ionics. 2006, 177, 2721-5.

95. Wang, S.; Fu, J.; Liu, Y.; et al. Design principles for sodium superionic conductors. Nat. Commun. 2023, 14, 7615.

96. He, X.; Zhu, Y.; Mo, Y. Origin of fast ion diffusion in super-ionic conductors. Nat. Commun. 2017, 8, 15893.

97. Park, K. H.; Bai, Q.; Kim, D. H.; et al. Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all‐solid‐state batteries. Adv. Energy. Mater. 2018, 8, 1800035.

98. Bachman, J. C.; Muy, S.; Grimaud, A.; et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 2016, 116, 140-62.

99. Oxley, B. M.; Lee, K.; Ie, T. S.; et al. Structure, second-, and third-harmonic generation of Li4P2S6: a wide gap material with a high laser-induced damage threshold. Chem. Mater. 2023, 35, 7322-32.

100. Lyoo, J.; Kim, H. J.; Hyoung, J.; Chae, M. S.; Hong, S. Zn substituted Li4P2S6 as a solid lithium-ion electrolyte for all-solid-state lithium batteries. J. Solid. State. Chem. 2023, 320, 123861.

101. Eckert, H.; Zhang, Z.; Kennedy, J. H. Structural transformation of non-oxide chalcogenide glasses. The short-range order of lithium sulfide (Li2S)-phosphorus pentasulfide (P2S5) glasses studied by quantitative phosphorus-31, lithium-6, and lithium-7 high-resolution solid-state NMR. Chem. Mater. 1990, 2, 273-9.

102. Mercier, R.; Malugani, J.; Fahys, B.; Douglande, J.; Robert, G. Synthese, structure cristalline et analyse vibrationnelle de l’hexathiohypodiphosphate de lithium Li4P2S6. J. Solid. State. Chem. 1982, 43, 151-62.

103. Hood, Z. D.; Kates, C.; Kirkham, M.; Adhikari, S.; Liang, C.; Holzwarth, N. Structural and electrolyte properties of Li4P2S6. Solid. State. Ionics. 2016, 284, 61-70.

104. Yahia H, Motohashi K, Mori S, Sakuda A, Hayashi A. Twinned single crystal structure of Li4P2S6. Z. Kristallogr. Cryst. Mater. 2023, 238, 209-16.

105. Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses. Adv. Mater. 2005, 17, 918-21.

106. Tatsumisago, M.; Nagao, M.; Hayashi, A. Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries. J. Asian. Ceram. Soc. 2013, 1, 17-25.

107. Murakami, M.; Shimoda, K.; Shiotani, S.; et al. Dynamical origin of ionic conductivity for Li7P3S11 metastable crystal as studied by 6/7Li and 31P solid-state NMR. J. Phys. Chem. C. 2015, 119, 24248-54.

108. Chang, D.; Oh, K.; Kim, S. J.; Kang, K. Super-ionic conduction in solid-state Li7P3S11-type sulfide electrolytes. Chem. Mater. 2018, 30, 8764-70.

109. Brinkmann, C.; Eckert, H.; Wilmer, D.; et al. Re-entrant phase transition of the crystalline ion conductor Ag7P3S11. Solid. State. Sci. 2004, 6, 1077-88.

110. Onodera, Y.; Mori, K.; Otomo, T.; et al. Crystal structure of Li7P3S11 studied by neutron and synchrotron X-ray powder diffraction. J. Phys. Soc. Jpn. 2010, 79, 87-9.

111. Mori, K.; Ichida, T.; Iwase, K.; et al. Visualization of conduction pathways in lithium superionic conductors: Li2S-P2S5 glasses and Li7P3S11 glass-ceramic. Chem. Phys. Lett. 2013, 584, 113-8.

112. Mori, K.; Enjuji, K.; Murata, S.; et al. Direct observation of fast lithium-ion diffusion in a superionic conductor: Li7P3S11 metastable crystal. Phys. Rev. Applied. 2015, 4.

113. Xiong, K.; Longo, R.; Kc, S.; Wang, W.; Cho, K. Behavior of Li defects in solid electrolyte lithium thiophosphate Li7P3S11: a first principles study. Comput. Mater. Sci. 2014, 90, 44-9.

114. Hong, H. Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors. Mater. Res. Bull. 1978, 13, 117-24.

115. Tao, B.; Ren, C.; Li, H.; et al. Thio-/LISICON and LGPS-type solid electrolytes for all-solid-state lithium-ion batteries. Adv. Funct. Mater. 2022, 32, 2203551.

116. Zhou, L.; Assoud, A.; Shyamsunder, A.; et al. An entropically stabilized fast-ion conductor: Li3.25[Si0.25P0.75]S4. Chem. Mater. 2019, 31, 7801-11.

117. Roh, J.; Lyoo, J.; Hong, S. Enhanced Li-ion conductivity and air stability of sb-substituted Li4GeS4 toward all-solid-state Li-ion batteries. ACS. Appl. Energy. Mater. 2023, 6, 5446-55.

118. Kaup, K.; Zhou, L.; Huq, A.; Nazar, L. F. Impact of the Li substructure on the diffusion pathways in alpha and beta Li3PS4: an in situ high temperature neutron diffraction study. J. Mater. Chem. A. 2020, 8, 12446-56.

119. Kanazawa, K.; Yubuchi, S.; Hotehama, C.; et al. Mechanochemical synthesis and characterization of metastable hexagonal Li4SnS4 solid electrolyte. Inorg. Chem. 2018, 57, 9925-30.

120. Tachez, M.; Malugani, J.; Mercier, R.; Robert, G. Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4. Solid. State. Ionics. 1984, 14, 181-5.

121. Kim, J. S.; Jung, W. D.; Choi, S.; et al. Thermally induced s-sublattice transition of Li3PS4 for fast lithium-ion conduction. J. Phys. Chem. Lett. 2018, 9, 5592-7.

122. Jun, K.; Lee, B.; L, K. R.; Ceder, G. The nonexistence of a paddlewheel effect in superionic conductors. Proc. Natl. Acad. Sci. U. S. A. 2024, 121, e2316493121.

123. Smith, J. G.; Siegel, D. J. Low-temperature paddlewheel effect in glassy solid electrolytes. Nat. Commun. 2020, 11, 1483.

124. Zhang, Z.; Li, H.; Kaup, K.; Zhou, L.; Roy, P.; Nazar, L. F. Targeting superionic conductivity by turning on anion rotation at room temperature in fast ion conductors. Matter 2020, 2, 1667-84.

125. Kuhn, A.; Holzmann, T.; Nuss, J.; Lotsch, B. V. A facile wet chemistry approach towards unilamellar tin sulfide nanosheets from Li4xSn1-xS2 solid solutions. J. Mater. Chem. A. 2014, 2, 6100-6.

126. Winkler, C. Germanium, Ge, ein neues, nichtmetallisches element. Ber. Dtsch. Chem. Ges. 1886, 19, 210-1.

127. Geller, S. The crystal structure of y Ag8GeTe6, a potential mixed electronic-ionic conductor. Z. Kristallogr. Cryst. Mater. 1979, 149, 31-48.

128. Belin, R.; Aldon, L.; Zerouale, A.; Belin, C.; Ribes, M. Crystal structure of the non-stoichiometric argyrodite compound Ag7-xGeSe5I1-x (x=0.31). A highly disordered silver superionic conducting material. Solid. State. Sci. 2001, 3, 251-65.

129. Kuhs, W. F.; Nitsche, R.; Scheunemann, K. The crystal structure of Cu6PS5Br, a new superionic conductor. Acta. Crystallogr. B. Struct. Sci. 1978, 34, 64-70.

130. Kuhs, W.; Nitsche, R.; Scheunemann, K. The argyrodites - a new family of tetrahedrally close-packed structures. Mater. Res. Bull. 1979, 14, 241-8.

131. Kong, S. T.; Deiseroth, H. J.; Reiner, C.; et al. Lithium argyrodites with phosphorus and arsenic: order and disorder of lithium atoms, crystal chemistry, and phase transitions. Chemistry 2010, 16, 2198-206.

132. Deiseroth, H.; Maier, J.; Weichert, K.; Nickel, V.; Kong, S.; Reiner, C. Li7PS6 and Li6PS5X (X: Cl, Br, I): possible three-dimensional diffusion pathways for lithium ions and temperature dependence of the ionic conductivity by impedance measurements. Z. Anorg. Allge. Chem. 2011, 637, 1287-94.

133. Gautam, A.; Sadowski, M.; Ghidiu, M.; et al. Engineering the site-disorder and lithium distribution in the lithium superionic argyrodite Li6PS5Br. Adv. Energy. Mater. 2021, 11, 2003369.

134. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Cryst. A. 1976, 32, 751-67.

135. Zhou, L.; Zhang, Q.; Nazar, L. F. Li-rich and halide-deficient argyrodite fast Ion conductors. Chem. Mater. 2022, 34, 9634-43.

136. Schlem, R.; Ghidiu, M.; Culver, S. P.; Hansen, A.; Zeier, W. G. Correction to changing the static and dynamic lattice effects for the improvement of the ionic transport properties within the argyrodite Li6PS5-xSexI. ACS. Appl. Energy. Mater. 2020, 3, 4089-90.

137. Morgan, B. J. Mechanistic origin of superionic lithium diffusion in anion-disordered Li6PS5 X argyrodites. Chem. Mater. 2021, 33, 2004-18.

138. Hanghofer, I.; Brinek, M.; Eisbacher, S. L.; et al. Substitutional disorder: structure and ion dynamics of the argyrodites Li6PS5Cl, Li6PS5Br and Li6PS5I. Phys. Chem. Chem. Phys. 2019, 21, 8489-507.

139. Ohno, S.; Helm, B.; Fuchs, T.; et al. Further evidence for energy landscape flattening in the superionic argyrodites Li6+xP1-xMxS5I (M = Si, Ge, Sn). Chem. Mater. 2019, 31, 4936-44.

140. Rayavarapu, P. R.; Sharma, N.; Peterson, V. K.; Adams, S. Variation in structure and Li+-ion migration in argyrodite-type Li6PS5X (X = Cl, Br, I) solid electrolytes. J. Solid. State. Electrochem. 2012, 16, 1807-13.

141. Kraft, M. A.; Ohno, S.; Zinkevich, T.; et al. Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP1-xGexS5I for all-solid-state batteries. J. Am. Chem. Soc. 2018, 140, 16330-9.

142. Rice, M.; Roth, W. Ionic transport in super ionic conductors: a theoretical model. J. Solid. State. Chem. 1972, 4, 294-310.

143. Kanno, R.; Murayama, M. Lithium ionic conductor thio-LISICON: the Li2S-GeS2-P2S5 system. J. Electrochem. Soc. 2001, 148, A742.

144. Kuhn, A.; Köhler, J.; Lotsch, B. V. Single-crystal X-ray structure analysis of the superionic conductor Li10GeP2S12. Phys. Chem. Chem. Phys. 2013, 15, 11620-2.

145. Kato, Y.; Hori, S.; Kanno, R. Li10GeP2S12-type superionic conductors: synthesis, structure, and ionic transportation. Adv. Energy. Mater. 2020, 10, 2002153.

146. Culver, S. P.; Squires, A. G.; Minafra, N.; et al. Evidence for a solid-electrolyte inductive effect in the superionic conductor Li10Ge1-xSnxP2S12. J. Am. Chem. Soc. 2020, 142, 21210-9.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/